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Abstract

We introduce Deduction-Projection Estimators : a family of methods for measuring
properties of neural networks inspired by the notion of a “deductive heuristic estima-
tor” introduced in [CNX22]. Unlike traditional techniques used in machine learning, a
DPE produces its estimate by mechanistically tracking how activations are processed
throughout a neural network. This allows us to understand how a model behaves over
an entire input distribution without having to generalize from observed behavior on a
finite number of sampled inputs.

The first half of this thesis deals with the philosophy and theory of deductive estimation:
how it differs from inductive reasoning, examples of deductive estimators in mathemat-
ics and machine learning, and why we might expect concise deductive explanations to
exist and be tractable to find in the first place. We also discuss how efficient deductive
estimators might be used to scalably control the worst-case behaviors of AI systems.

In the second half, we empirically evaluate DPEs against traditional machine learning
methods. First, we introduce the problem of low probability estimation: given a trans-
former language model and a formally specified input distribution, can we estimate
the probability that it generates a particular output, even when this probability is too
small to detect with naive sampling? We develop activation extrapolation methods
based on simplified DPEs, which empirically outperform naive sampling. However, the
highest-performing estimators leverage importance sampling, which can be thought of
as a generalization of adversarial training.

Finally, we explore how our techniques can be used to optimize small neural network
classifiers to achieve maximal accuracy on an algorithmic task. Our experimental re-
sults show that DPEs often outperform cross-entropy loss as an optimization target
by providing a stronger gradient signal towards maximizing accuracy. We discuss the
limitations of our empirical settings and list future lines of work.

Our code is available at https://github.com/alignment-research-center/low-probability-
estimation and https://github.com/GabrielDWu/piecewise-constant-objectives.

https://github.com/alignment-research-center/low-probability-estimation
https://github.com/alignment-research-center/low-probability-estimation
https://github.com/GabrielDWu/piecewise-constant-objectives
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0
Introduction

Random sampling is a central feature of almost every algorithm in the field of modern machine learning.

This is no coincidence: the single most important quantity in machine learning, a model’s loss, is defined

as the expected value of its performance on a random data point. It’s only natural to estimate an

expectation with a sample mean. These stochastic methods are extremely effective, as evidenced by

the rapid pace of recent capabilities improvements in frontier AI systems.

However, sampling-based estimators can have awkward failure modes. For instance, evaluating the

performance of a model on n random inputs tells us almost nothing about model behaviors that occur

with probability significantly less than 1/n. We call this the problem of low probability estimation,

explored in Section 5. Other times, the sample means of some loss functions have a gradient of

0 almost surely, rendering stochastic gradient descent useless—this is explored in Section 6. More

generally, while a sampling-based algorithm can easily demonstrate that a neural network has a certain

property, it fails to shed light on why this is the case.

In this thesis, I offer an alternative class of algorithms, based not on random sampling but on “deductive

estimation.” Roughly speaking, deductive estimates are calculations that appeal to the computational

structure of a neural network to analyze its behavior. Due to their heuristic nature, these estimates

will not be exact, and we often won’t even have provable bounds on their approximation quality.

Nevertheless, by dealing with mechanistic observations about a model instead of merely behavioral

ones, deductive estimators address some of the failures that arise in standard sampling-based machine

learning practices.

Deductive estimates themselves are nothing new. Number theorists [Cra36, EU71] and physicists

[CH19, MZ02] frequently use heuristically-motivated deductive arguments to justify statements that

are difficult to prove rigorously. In fact, constructive proofs themselves can be considered a special

case of deductive estimation in which every step is logically sound, and are thus exact calculations

rather than estimates. [CNX22] takes a meta-level approach to deductive estimation, attempting to

characterize a universal heuristic deductive estimator that can be applied to any formal quantity. The

perspective introduced by that paper, as well as follow-up work by [Ney24] and [CHL+24], directly

informs many of the philosophical ideas argued within this thesis.

While deductive estimation itself is a commonly used mathematical tool, the goal of this work is to

demonstrate that deductive estimates can be practically useful in machine learning settings by giving

us increased control and insight into neural network behaviors. Many of the novel contributions of

this thesis are empirical results analyzing the performance of deductive estimation on small language

models and toy neural networks.

Our work may be viewed as an alternative to mechanistic interpretability : a growing field of machine

learning that attempts to reverse-engineer the circuitry of trained AI systems to develop a better

understanding of their internal cognition [BG24]. Similar to work in mechanistic interpretability, we

hope to leverage the internals of a model to uncover and mitigate worst-case behaviors (Section 3).

However, we differ from traditional mechanistic approaches by solely dealing with formal quantities

and estimates, removing the need for a human to intuitively “understand” any part of the model.
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0.1 Overview of this thesis

This thesis is divided into two parts. Each part can be read and appreciated independently of the other,

although the estimators used in the empirical results are motivated by the preceding philosophical

discussion.

Part I deals with the philosophy of deductive estimators. We begin with a discussion of what

it means for an argument to be deductive as opposed to inductive, and why this distinction matters.

Section 1 examines the universal heuristic deductive estimator G as introduced by [CNX22, CHL+24].

Deductive estimators correspond to a very broad class of possible algorithms, so in Section 2 I define a

subclass of methods called Deduction-Projection Estimators that are well-suited for analyzing neural

networks.

Section 3 discusses the AI alignment problem as a deeper, real-world motivation for why we should

care about deductive estimates. In particular, I explain how we might be able to leverage deductive

estimates about neural networks to solve two problems—low probability estimation and mechanistic

anomaly detection—that address ways in which advanced AI systems may behave catastrophically.

Finally, Section 4 introduces the No-Coincidence Principle: a conjecture inspired by [Gow19] that, if

true, would guarantee the existence of short deductive explanations for any surprising mathematical

statement. I also present a recent complexity-theoretic formalization of the conjecture due to [Ney25].

Part II empirically applies Deduction-Projection Estimators (DPEs) to neural networks.

The goal of this part is to investigate how the intuitions we have about the advantages of deductive

estimation hold up in practice. In Section 5, I introduce the problem of estimating probabilities of

rare language model outputs and develop a class of estimation methods called activation extrapolation

(based on DPEs). Activation extrapolation strongly beats the baseline of naive sampling, although in

our experiments it is still outperformed by importance sampling (inspired by standard approaches to

adversarial training). This section is primarily a repackaged version of [WH25], a standalone paper on

the topic.

Finally, in Section 6 we move to the setting of a small recurrent neural network trained on a toy

algorithmic task. The temperature-zero prediction of the model on a given data point is a piecewise-

constant function of its parameters, making it impossible to apply stochastic gradient ascent against

its accuracy. As a solution, I present a Deduction-Projection Estimator for the accuracy of the model

and show how this allows us to improve it beyond what is possible with standard cross-entropy loss. I

view this as the first compelling empirical example of deductive estimators prevailing over traditional

machine learning methods.

Remark. Why Philosophy?

Some readers may be surprised to see that half of a thesis written for the departments of

computer science and math is titled “Philosophy.” Historically, many fields of analytical inquiry

were conducted under the banner of philosophy before they developed into formal sciences—for

example, physics (before Newton), psychology (before Wilhelm Wundt), and logic (before Boole

and Frege). This is the sense in which we use the term here: the goal of Part I is to better

understand the nature and limitations of deductive heuristic arguments in math, despite our

lack of a formal framework for this concept.

2



0.2 Our contributions

The overall emphasis on the “deductiveness” of G (as opposed to its “heuristicness”) in Part I is a novel

framing, although many of the ideas first appear in [CNX22, Ney25]. The definition of a Deduction-

Projection Estimator and the analysis of covariance propagation through an MLP in Section 2 are

novel, although the former is heavily inspired by the layer-by-layer activation modeling described in

[Xu24]. The discussion on the tractability of finding heuristic explanations in Section 4.2 is also novel

to this thesis.

In Part II, the definition of low probability estimation for language models and the associated estima-

tion methods (Independent Token Gradient Importance Sampling, Metropolis–Hastings Importance

Sampling, Quadratic Logit Decomposition, Gaussian Logit Difference) in Section 5 are all original.

Similarly, the algorithms for Girard Accuracy and Gaussian Mixture Half-space Pruning in Section 6

are novel. All of the code and empirical results contained in this thesis are original.

3



“If an apparently outrageous coincidence happens in mathematics, then
there is a reason for it.”

—Timothy Gowers, British mathematician and 1998 Fields Medalist

“Everything happens for a reason.”

—Pinterest

Part I:

Philosophy

4



1
Deduction versus induction in heuristic

reasoning

In some sense, the job of a mathematician is to find arguments that convincingly demonstrate whether

or not a given formal statement is true or false. Sound proof systems are an extremely useful tool for

this, as a formal proof is a maximally convincing argument. However, there are many mathematical

statements that (so far) elude proof, but are still widely believed to be true. For example:

• (Normality of π) We strongly believe that each decimal digit 0, . . . , 9 appears with limiting density

1/10 in the digits of π [BBC+12].

• (P ̸= NP) We strongly believe that there is no polynomial time algorithm for solving 3SAT

[Aar17].

• (Twin prime conjecture) We strongly believe that there are an infinite number of prime pairs

that differ by 2 [Zha14].

How do mathematicians justify their belief in such statements? Rather than using a formal proof,

in these cases we are forced to use heuristic reasoning—arguments that aren’t logically sound, but

are convincing nevertheless. For example, we believe P ̸= NP in part because there have been so

many opportunities to disprove it by exhibiting an efficient algorithm for any NP-complete problem,

yet none of them have worked. We believe the twin prime conjecture because if we model the primes

as appearing randomly with the density 1/ log(n), then there are an infinite number of twin primes

almost surely. [Gow19] gives a great account of other examples of heuristic reasoning in mathematics.

In this section, I will argue that there are two main forms of heuristic reasoning: deductive reasoning

and inductive reasoning.2

Definition 1.1. (Informal)

Deductive reasoning describes any heuristic reasoning that directly appeals to structural

properties of the expression of interest to infer other properties.

This definition is necessarily vague since we lack a suitable formalization of heuristic reasoning itself.

The best way to communicate the notion of inductive reasoning may be through examples.

Constructive proofs. Almost all3 constructive proofs are a special case of deductive arguments in

which every step is logically sound. Confusingly, proofs that use formal induction (i.e., proving p(0)

and p(n) =⇒ p(n+ 1), then inferring p(n) ∀n ∈ N) should also be classified as deductive because the

inductive step has been deductively justified.

Twin prime conjecture by density of primes. We can present a deductive argument for the

existence of an infinite number of twin primes:

• By the prime number theorem, a random number between 1 and N is prime with probability

roughly 1
logN . This statement can be proven deductively.

2There may also be other types of heuristic reasoning that do not clearly fall into either category, but I focus on
contrasting deduction with induction in this thesis.

3It is possible to create obfuscated proofs. This means there exists a randomized polytime algorithm A that can take
in a proof and outputs a proof of the same theorem (all in first-order logic) such that for any two proofs P, P ′ of equal
length of a given statement, A(P ) and A(P ′) are computationally indistinguishable [GOS06, Chr23]. Such proofs should
not be classified as deductive, but it is unclear to me whether it is possible to create obfuscated constructive proofs.
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Figure 1: An example Sudoku grid. Image credit: https://puzzlemadness.co.uk

• By contrast, it is extremely hard to prove anything about Prx∼[N ][x is prime ∧ x + 2 is prime].

However, if we model these two events as independent (i.e., we approximate Pr[A ∧ B] as

Pr[A] Pr[B]), we get an estimate of N
log2 N

for the number of twin prime pairs at most N .

• This estimate grows to infinity as N grows, therefore there are an infinite number of twin primes.

See [CNX22] for a more detailed analysis of this deductive argument.

Deductive Sudoku estimation.4 A Sudoku grid is a 9 × 9 grid of digits (each from 1 to 9) such

that each row, each column, and each of the 3 × 3 sub-grids contains each number exactly once (for

example, see Figure 1). How many valid Sudoku grids are there?

Here is a simple deductive estimate: There are 981 total possible grids. For a randomly selected grid,

the probability that any given row, column, or subgrid is satisfied is 9!/99. Thus, if we treat all

9 + 9 + 9 = 27 constraints as independent, we obtain an estimate of 981 · (9!/99)27 ≈ 3 × 10−5 for

the number of valid Sudoku grids. Since this is less than 1, this is a horrible estimate, but it is still

deductive.

For a better deductive estimate, notice that there are 9!9 ways to fill in the grid such that each subgrid

is satisfied. Conditioned on all of the subgrids being satisfied, the probability that any given row or

column is satisfied is 9!

(3!(9
3))3

(there are 9! valid ways to fill in a row, but (3!
(
9
3

)
)3 ways that a row could

be filled in conditioned on each of the subgrids having unique entries). Thus, our estimate for the total

number of Sudoku grids would be:

9!9

(
9!

(3!
(
9
3

)
)3

)18

≈ 15218.

This is a better estimate, but still far from the true value of ≈ 7× 1021 because it neglects to account

for any correlations between row and column constraints.

One might notice that these examples of deductive heuristic estimates both rely on a step in which we

assume independence between terms whose correlations would otherwise be hard to explicitly track.

This move—known as the presumption of independence—is a key feature to many deductive arguments

and will be explored further in Section 1.3 [Tao12, CNX22].

4This example is due to Mark Xu.
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Definition of C

Facts about C

C(x1) C(x2) C(z3)

Figure 2: The value of C is logically downstream from facts about C, which is in turn downstream from the
definition of C.

We contrast deductive reasoning with inductive reasoning:

Definition 1.2. (Informal)

Inductive reasoning describes any heuristic reasoning that appeals to the generalization of

observed properties on some small set of expressions to a broader class of similar expressions.

Here are some examples of inductive arguments.

Goldbach’s conjecture by checking small cases. Goldbach’s conjecture states that every even

number greater than 2 can be written as the sum of two primes. We have exhaustively checked that

this statement is true for all n up to 4× 1018. An inductive heuristic argument would say: given that

this statement has been true for so many numbers, it probably holds for all numbers [Bak07]. Note

that there are also strong deductive arguments for Goldbach’s conjecture that appeal to the density of

the primes.

Loss of a neural network. Let fθ : Rn → Rm be a neural network. Then, given a distribution D
over labeled data pairs (x, y) ∈ Rn × Rm, say that the loss of the network is defined as:

L(fθ) = E
(x,y)∼D

[
∥fθ(x)− y∥2

]
.

An inductive estimator for the loss would take the average value of this quantity across a finite sample

of data points. It is inductive because we appeal to the fact that a property holds on a small set of

expressions (“∥fθ(x) − y∥2 has an average value of 16.2 for (x, y) ∼ {(x1, y1), . . . , (xn, yn)}”) to infer

that it also holds on a larger, possibly infinite, set of expressions (“∥fθ(x)− y∥2 has an average value

of 16.2 for (x, y) ∼ D”).

Note that inductive arguments are often more convincing than deductive ones, especially if it is possible

to prove probabilistic guarantees about the quality of the estimate. However, deductive arguments

intuitively seem to capture “why” a statement is true in a way that inductive arguments do not.

An alternate way to describe the difference between deduction and induction is to consider the rel-

evant mathematical statements in a causal model, similar to a Bayes network [CNX22]. Deduction

corresponds to using facts to reason about other facts that are “logically downstream.” Induction

corresponds to reasoning in the opposite direction of logical causality to infer upstream facts from

downstream ones.

For example, say C is a boolean circuit, and we are tasked with estimating the expected value of C on

a uniformly random input. Figure 2 shows a causal model of what facts intuitively lead to other facts

being true. A deductive estimate would use the definition of C to infer structural properties of C,

which in turn lets us infer the average value of C. This flows in the direction of the causal arrows. In

contrast, an inductive estimate observes the values of C on particular inputs, and if any bias appears

it implicitly infers that there must have been upstream properties of C that led to this bias (traveling

against a causal arrow), then finally uses this to predict the value of C on unseen inputs.

7



Heuristic estimation Proof verification
Universal deductive heuristic estimator, G Proof verifier

Formal mathematical expression Formal mathematical statement
List of heuristic arguments Purported proof of statement

Formal language for heuristic arguments Formal language for proofs
G’s estimate of expression Verifier’s output (accept or reject)

Table 1: Comparison between heuristic estimation and proof verification. Adapted from [Ney24].

1.1 G: the universal deductive heuristic estimator

[CNX22] attempts to formalize non-rigorous deductive reasoning by introducing a mathematical object

G called a “heuristic estimator.”5 In the context of this work, G should be thought of as a universal

deductive heuristic estimator. They do not give a formal definition for this object, but describe it as

an efficient program that takes as input an expression X (which can be any formally defined quantity,

such as “the number of primes less than 1000” or the output of a given Python program) and a set of

formal heuristic arguments π1, π2 . . . , πn, then outputs a best guess G(X|π1, . . . , πn) about the value

of X. G should produce an estimate even if the arguments π1, . . . , πn are unhelpful or misleading,

although in these cases the estimate may be very poor.

The authors of [CNX22] intend to use G to formalize all deductive reasoning, including heuristic

reasoning. They choose this notation to distinguish the estimator G—which is posited to be simple

and universal, in the same way that the universal Turing machine is simple and universal—from the

arguments π1, . . . , πn that are specific to a given expression X. Note that although G is posited

to be efficient on any given input, it may be computationally difficult to find high-quality arguments

π1, . . . , πn that cause G to produce a good estimate on a certain X (see Section 4.2 for more discussion).

As a motivating example, let X be the expression “the number of twin prime pairs less than 1000.”

Given no arguments, G(X| ) is maximally uncertain; perhaps it outputs a guess of 500 (reasoning that

there is a 50/50 chance that any given pair n, n + 2 is a prime pair).6 However, if some argument

π1 points out the prime number theorem, then G(X|π1) may revise its estimate to 1000
(log 1000)2 . Next,

π2 may point out that, conditioned on n being prime, there’s a higher than 1/(log 1000) chance that

n + 2 is prime because n being odd implies n + 2 is also odd. This should cause G(X|π1, π2) to revise

its estimate upwards. π3 could point out that if n is not divisible by 3, then there is a greater than

1/3 chance that n + 2 is divisible by 3, which should then cause the estimate to decrease. And so on.

We can draw an analogy between deductive heuristic estimation and proof verification, as shown in

Table 1. One of the biggest disanalogies between the two is soundness: while we are able to design

proof systems that never accept a proof of a false statement, due to the nature of heuristic reasoning

we cannot hope for a similar soundness property of G. In fact, it may be possible to “cherry-pick”

arguments π1, . . . , πn that convince G to output arbitrary incorrect estimates of a given expression X.

[CHL+24] also likens G to a subjective conditional expectation. In probability theory, the conditional

expectation E[X|A] is the average value of X over all outcomes in which A occurs. In Bayesian terms,

this can be thought of as the subjective expectation an observer has of X, given that they have only

observed A. In the same way, it may be helpful to think of G as an observer’s subjective expectation

of X if they have only had the arguments π1, . . . , πn pointed out to them. This analogy only goes so

far though, since we would like G to only update on deductive evidence, whereas Bayesian observers

use both inductive and deductive evidence.

Ultimately, the notion of a universal heuristic estimator is extremely ambitious because it attempts to

provide a unified framework for all types of deductive estimation. Some initial progress on clarifying

the desired properties of G has been made by [CHL+24], but we still do not have a satisfactory set

5They use the symbols Ẽ or P̃ in the original work, but G in future papers.
6250 would also be a reasonable estimate given no arguments, if it models every individual number as being prime

with a 50/50 chance.
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of desiderata for G, much less a construction. In this work, I mainly take the existence of G to be

aspirational, and in practice I study specific examples of deductive estimators that are useful for neural

networks even if they cannot be generalized to arbitrary mathematical expressions.

Remark 1.1

In this thesis, we will be talking a lot about deductive estimators, estimates, arguments, and

explanations. The distinction between these terms is not always clear or important, but I will

use them in the following way (everything is assumed to be deductive):

• An estimator is an algorithm that takes in an expression and a set of arguments, then

produces an estimate.

• An estimate is a real number outputted by an estimator. It also sometimes refers to the

instantiation of an estimator on a particular expression (in which case it represents the

“transcript” of the algorithm).

• An argument is an input to an estimator that “points out” observations about an ex-

pression relevant for estimating its value.

• Explanation is a synonym for “argument.” It is used to emphasize cases in which

the value of X is naively surprising (e.g., a particular setting of neural network weights

achieves much lower loss than a random circuit of that size would get), so the existence

of an argument that results in an accurate estimate in some sense elucidates “why” X

has that value.

1.2 Determinism does not imply deduction

On a first pass, it might appear that the difference between deductive and inductive estimators is

that inductive arguments allow the use of randomness. It is plausible that a purely deductive esti-

mator should always be deterministic. However, sampling is non-deductive not simply because it is

randomized, but rather that it makes an appeal to generalization without “explaining why.”

For example, it is widely believed that there exist pseudorandom generators: efficiently computable

functions f : Rs → Rn for s = O(log n) such that the distribution of f(x) is computationally indistin-

guishable (relative to a polynomially-sized circuit) to the uniform distribution over n bits [HILL99].

Given a candidate PRG, we can de-randomize any randomized algorithm A(x, r) while maintaining

the guarantees of accuracy.7 The resultant algorithm is deterministic, but it is still not deductive.

In fact, it is informative to ask what behavior a deductive estimator should have upon observing

the results of samples. Say we are tasked with estimating the expectation of a boolean circuit C :

{0, 1}n → {0, 1}. Without any arguments, G(E[C] | ) outputs the maximally uncertain estimate of

1/2. Next, let π consist of the evaluation of C on 100 distinct inputs x1, . . . , x100 (these inputs may

have been chosen (pseudo)randomly, but this is not a requirement): i.e., π is the observation that

C(x1) = y1, . . . , C(x100) = y100. What is G(E[C] |π)?

If G were moved by inductive arguments, we might expect the estimate to be 1
100

∑100
i=1 yi. However, a

deductive estimator should not believe there is any correlation between the outputs of C unless that

correlation has been pointed out to it. A more appropriate estimate would be

G(E[C] |π) =

(
1

2
· (2n − 100) +

100∑
i=1

yi

)
2−n,

corresponding to G having 50/50 uncertainty about the output of C on all inputs except for the 100

cases that have been revealed to it. If n is large, this estimate is extremely close to 1/2. Deductive

7Instead of using a source of randomness, feed in the output of the pseudorandom generator and average across all
possible seeds, of which there are only polynomially many: 1

2s
∑

r′∈{0,1}s A(x, f(r′)).
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E E′
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≈

Figure 3: An illustration of Szemerédi’s regularity lemma from an information-theoretic perspective.
Informally, we can construct an event E′ that depends only on a small subset of the bits in X1 and X2, as

well as some independent pseudorandom noise, such that E and E′ are “indistinguishable” from the
perspective of the remaining bits of X1, X2. See [Tao05b], Lemma 4.3 for a more precise statement.

estimators do not update much on behavioral evidence (i.e., evaluations on particular inputs).

1.3 Structure versus randomness

Another perspective on the nature of deductive estimates comes from the “structure versus random-

ness” paradigm: a class of methods that simplify complex mathematical objects by decomposing them

into a structured part and a pseudorandom part [Tao05a]. The structured part has low complexity and

can be analyzed with domain-specific tools, while the pseudorandom part can be shown to behave like

a truly random object, so it can be safely treated as noise and dealt with using standard inequalities

such as Cauchy-Schwarz [Tao07]. This dichotomy has shown to be a fruitful approach in a variety of

fields, including number theory, combinatorics, and computational complexity. For example, it was

a key part of the proof of the Green-Tao theorem: there are arbitrarily long arithmetic sequences of

primes [GT08].

The Szemerédi regularity lemma is a great example of this type of structure-versus-randomness de-

composition [Sze78]. Roughly, the lemma states that the vertices of any large undirected graph can be

partitioned into a constant number of equally-sized vertex groups V1, . . . , Vk with the following prop-

erty. For almost every pair of vertex groups (Vi, Vj), the edges between Vi and Vj are “random-looking,”

in the sense that there is no induced subgraph that has significantly more or fewer edges than one

would expect in a random graph with that edge density. [Tao05b] also gives an information-theoretic

formulation of the Szemerédi regularity lemma. Informally, given any two high-entropy random vari-

ables X1, X2 and an event E, there exist low-entropy random variables Z1, Z2 that only depend on

X1, X2, respectively, such that E is “approximately independent” of X1 and X2 after conditioning on

Z1 and Z2 (Figure 3).

Deductive arguments commonly leverage this structure-versus-randomness dichotomy. For example,

consider the heuristic estimate of the number of twin prime pairs less than 1000 from Section 1.1.

Initially, G models the occurrence of prime pairs as a completely random function. Each successive

argument π1, π2, . . . then points out some element of structure (the inverse logarithmic density, the

correlation between residues mod 2, mod 3, etc.). Along the way, G accounts for all of the structure

that has been pointed out, while treating any remaining uncertainty as random noise.

Importantly, though, a deductive heuristic estimator typically cannot prove that its implicit structure-

versus-randomness decomposition will result in an acceptable amount of approximation error. Instead,

any “untracked terms” are simply assumed to behave in an uncorrelated way by default; this is known

as the principle of the presumption of independence, and it is the central focus of [CNX22].
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2
Deduction-Projection Estimators

The previous section has shown that the notion of “deductive estimation” is quite broad. To narrow

the scope of this thesis, all of the deductive algorithms we empirically study in Part II have a particular

form that we will call Deduction-Projection Estimators.

Definition 2.1. (Informal)

A Deduction-Projection Estimate (DPE) of a mathematical quantity X is a calculation

that consists of two types of operations:

• (Deduction) A provably exact operation to compute a state.

• (Projection) Replacing a complex intermediate state with a deductive approximation of

that state lying in a simpler “subspace.”

The calculation must be defined such that, if not for the projection steps, the final output

would be an exact computation of the value of X. However, it may be intractable to perform

this calculation without the projection steps because of the complexity of intermediate states.

Any particular instantiation of a DPE must specify what the intermediate states of the al-

gorithm correspond to semantically, how the simpler subspace is represented, and how the

projection onto these subspaces is defined.

In Remark 2.1 we elaborate upon the connection between Definition 2.1 and notions from the previous

chapter. While still broad and informal, this definition is explicit about the types of steps in which

heuristic reasoning is allowed: it must only occur when approximating an internal state by a simpler

representation.

DPEs are well-suited for estimating the expectation of an easy-to-compute function over an input

distribution with a hard-to-enumerate support, e.g., Ex∼D[f(x)], where D ∈ ∆(Rn) and f : Rn → R is

an arithmetic circuit (possibly including non-linear gates like ReLU). Such expressions arise naturally

in machine learning settings.

For example, suppose that f is defined as a composition of simpler functions f = fℓ ◦ fℓ−1 ◦ · · · ◦ f1,

where each fi : Rdi−1 → Rdi might correspond to a transition between consecutive layers in a neural

network, with d0 = n and dℓ = 1. Let X0 be a random variable drawn from D, and let X1, . . . , Xℓ be

random variables corresponding to intermediate activations of the network:

X0 X1 · · · Xℓ = f(X0)
f1 f2 fℓ

A natural DPE for E[Xℓ] corresponds to a choice of:

• A tractable family of distributions D ⊂ ∆(Rd)

• A notion of “closeness” between any two distributions in ∆(Rd)

• A procedure for deductively computing the closest distribution in D to any given distribution

A ∈ ∆(Rd). Call this the “projection of A onto D .”

To execute the DPE, we initialize8 D0 = D, then iteratively (for i = 1, . . . , ℓ):

8If D /∈ D , we may have to project it down first.
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• Compute the “pushforward” distribution fi(Di−1).

• Project fi(Di−1) back down to the closest distribution in D . Call this Di.

Our final output is E[Dℓ], which is easy to compute as long as D is sufficiently tractable. Returning

to Definition 2.1, this algorithm is a DPE in which the intermediate states Di correspond to approx-

imations of the distributions of the random variables Xi. If the projection steps were skipped, the

algorithm would be exact.

A concrete example of a DPE of this form is covariance propagation, in which D corresponds to the

family of all multivariate Gaussians, closeness is measured in terms of KL divergence, and projection

onto D can be done by analytic moment matching.

Remark 2.1

In previous sections, we discussed the role of heuristic arguments π1, . . . , πn in “pointing out”

observations about X relevant for helping the estimator do its job. Where are these heuristic

arguments found in the ontology of Deduction-Projection Estimators?

One answer is that they no longer exist. Due to its universality, G needs to be provided argu-

ments to perform reasonably. By contrast, each DPE is specialized for estimating a particular

type of expression. In some sense, the insights previously provided by π have been “hard-coded”

into the estimator itself.

A second possible answer is that π1, . . . , πn correspond to a DPE’s choice of representation

for the simpler subspaces, as well as the way in which the projection onto these subspaces is

performed. When we talk about a particular DPE, we’re really studying the partial application

of a general estimator on a fixed set of arguments.

This philosophical confusion has little importance once we begin describing concrete algorithms.

2.1 Covariance propagation

We now study a natural example of a DPE called covariance propagation, first described in [CNX22]

in the setting of general arithmetic circuits. We take the more concrete approach here by using the

algorithm to estimate the expectation of a multilayer perceptron (MLP). Say we are given an MLP of

the form:

f(x) = AℓReLU(Aℓ−1ReLU(· · ·ReLU(A2ReLU(A1x + b1) + b2) · · · ) + bℓ−1) + bℓ,

where Ai ∈ Rdi×di−1 , bi ∈ Rdi , and ReLU : Rd → Rd is a nonlinear activation function that indepen-

dently maps each coordinate z to (z + |z|)/2. In other words, f alternates between applying affine

transformations (x 7→ Aix + bi) and ReLUs. See Figure 4 for a visualization of an MLP.

We are tasked with estimating the expectation of the MLP under a standard Gaussian input:

E
x∼N (0,Idd0

)
[f(x)].

Covariance propagation approaches this problem by modeling the activations at each internal layer as

a multivariate Gaussian with some mean and covariance. At the input layer, the distribution over x is

known to be Gaussian with mean µ(0) = 0 and covariance Σ(0) = Idd0
(parenthesized superscripts are

used on µ and Σ to index layers in the MLP, while subscripts will index coordinates within a layer).

At each subsequent layer i, we pick the Gaussian N (µ(i),Σ(i)) that minimizes the Kullback-Leibler

divergence KL(fi(N (µ(i−1),Σ(i−1)))∥N (µ(i),Σ(i))).

How do we minimize this KL? A well-known fact is that, given any distribution P over Rn, the Gaussian

12



x f(x)

Figure 4: An MLP from R3 → R with two hidden layers (biases not shown). The value of each neuron is a
scalar given by the weighted sum of all incoming neurons. ReLUs are applied at each shaded neuron.

N (µ,Σ) that minimizes KL(P∥N (µ,Σ)) can be found by matching its first two moments:

µ = E
x∼P

[x] Σ = E
x∼P

[
(x− µ)(x− µ)T

]
.

Thus, the task reduces to deductively propagating the first and second moments of a Gaussian through

the layers of the MLP. The affine transformations are easy:

E
x∼N (µ,Σ)

[Ax + b] = Aµ + b Cov
x∼N (µ,Σ)

[Ax + b] = AΣAT .

Propagating a mean through a ReLU is also straightforward. If x ∼ N (µ,Σ), then for any coordinate

j ∈ [d], the expected value of ReLU(x)j = ReLU(xj) is the mean of a truncated normal with center

µj , scale parameter Σjj , and lower bound 0, multiplied by the probability that it is positive:

E
x∼N (µ,Σ)

[ReLU(x)]j = µjΦ (α) +
√

Σjjφ (α) ,

where α =
µj√
Σjj

and φ,Φ are the PDF and CDF of a standard normal, respectively.

However, propagating a covariance through a ReLU is much harder. Given any two j, k ∈ [d], find-

ing the second moment E[ReLU(x)jReLU(x)k] = E[ReLU(xj)ReLU(xk)] requires using the bivariate

normal CDF [Ros61]. The bivariate normal CDF has no closed form—the best approximation tech-

niques we have use quadrature or Monte Carlo methods to perform numerical integration.9 Using

these numerical methods still gives a valid algorithm, but in some sense, it trades off against the “de-

ductiveness” of the estimate. Overall, however, it would still have almost all of the desirable properties

of a purely deductive estimate because it only uses sampling for computing a local, two-dimensional

subproblem (see Remark 2.2).

An alternative to using the bivariate normal CDF is to break each ReLU : Rd → Rd into a sequence

of d ReLUs on individual coordinates. Starting with N (µ,Σ), we ReLU the first coordinate, then

project back down to a Gaussian, then ReLU the second coordinate, then project, and so on. This

corresponds to an “algebraic circuit re-write”: we change transition functions between intermediate

states in a way that keeps the overall circuit mathematically equivalent, although the total number of

transition functions greatly increases. While this approach is likely to produce less accurate estimates

— the quality of the Gaussian approximation degrades with each nonlinearity applied — it has the

benefit of being possible to compute deductively.

When we only ReLU a single coordinate at a time, the covariance calculation is much simpler. Say

9Note that the single-dimensional CDF Φ(x) = 1
2

[
1 + erf(x/

√
2)
]
also requires numerical methods to compute, but

this can be done very simply and efficiently with an approximation of erf to a rational function [Cod69].
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we wish to calculate E[ReLU(xj)xk]. We can write xk = xj · Σjk/Σjj + zjk, where zjk is a Gaussian

random variable independent from xj . Then the only interesting term reduces to E[ReLU(xj)xj ] =

E[ReLU(xj)
2], which is simply the second moment of a truncated normal, scaled down by the proba-

bility it is positive:

E
x∼N (µ,Σ)

[ReLU(xj)xj ] = (Σjj + µ2
j )Φ(α) + µj

√
Σjjφ(α).

Remark 2.2

Among these two approaches—using a numerical (possibly randomized) method for approxi-

mating the bivariate CDF, or applying the ReLUs coordinate by coordinate—which is “better”?

The author believes that the first approach is superior. The numerical method will likely

produce more accurate estimates and is more efficient, although the time complexities are

sensitive to the implementation details of the bivariate CDF approximation. Finally, even if

we have a moral aversion to non-analytic (i.e., numerical or sampling-based) methods, I argue

that we should be philosophically unbothered by numerical methods used in low-dimensional

subroutines. In this case, we only apply numerical methods to a 2-dimensional problem. In

some sense, low-dimensional settings are small enough that inductive algorithms can “explore

the entire search space” after checking enough inputs (this would make more sense if our input

space were finite). The curse of dimensionality only kicks in when we increase the number of

inputs to the problem, requiring an efficient inductive estimator to generalize to unseen regions

of input space.

The mechanics of covariance propagation are very similar to Assumed Density Filtering (ADF), a

well-known Bayesian inference method. ADF involves updating a posterior distribution by repeatedly

incorporating new measurements, then projecting back down to a Gaussian with moment matching

[Ran04]. The key difference between covariance propagation and ADF is that our distributions are

directly transformed via layers of a neural network rather than through Bayesian updates.

It is easy to identify simple examples in which the analytic computation of covariance propagation gives

big improvements over a sampling-based algorithm. For example, if we are given an MLP that has

an exponentially small likelihood of outputting a non-zero value (e.g., ReLU(x − 10) for x standard

normal), a sampling-based estimator would be unable to distinguish this network from one that is

identically zero. In these cases, covariance propagation would be better than sampling at dealing with

questions like “What is the probability that this network outputs a value greater than 1?” (where

estimation quality is measured on a log scale). We explore this idea of low probability estimation in

Sections 3.1 and 5.

The more that internal layer activations in an MLP are non-Gaussian, the less accurate covariance

propagation will be. One way to generalize covariance propagation would be to track the first k joint

moments rather than only the first 2; this is known as cumulant propagation ([CNX22] appendix D).10

Alternatively, we could use a more expressive family of distributions such as a mixture of Gaussians

or a sum of independent linear one-dimensional features as in [CMR24].

10Unlike covariance propagation, cumulant propagation for k > 2 does not have a nice interpretation in terms of
projection onto some simpler set of distributions.
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3
Relation to AI Alignment

In this section, we explore how deductive estimators may be valuable for solving problems in AI

alignment, a subfield of machine learning that studies how to get AI systems to do what their developers

want, even as they scale beyond human capabilities.

AI companies like OpenAI, Anthropic, and Google DeepMind are currently racing at breakneck speeds

to build increasingly smart AI systems. Recent progress has been fast. GPQA Diamond is a benchmark

of multiple choice PhD-level science questions, intended to be challenging for human experts even when

given access to the internet [RHS+23]. GPT-4, released in June of 2023, scored 31% on this benchmark

(random guessing corresponds to 25%). Only a year and a half later, OpenAI’s o3-mini model scored

77%, surpassing the accuracy of expert humans (70%) [Epo24].11 Progress has been just as fast on

open-ended tasks that require agentic capabilities. On SWE-bench Verified, a benchmark that asks

language model agents to solve real-world GitHub issues, the top score on the public leaderboard

increased from 4.4% (an agent based on Claude 2 in October 2023) to 64.6% (an agent based on o1 in

January 2025) in a little over a year [JYW+24]. And this only considers the progress since 2023 : it’s

hard to believe that in 2019, the state-of-the-art language model (GPT-2) had trouble counting past

ten. Recent work by METR shows that the length of tasks that AI agents can solve has been growing

exponentially since 2019, with a doubling time of seven months [MET25]. If this trend continues, in

under five years AI agents will be able to independently automate most software tasks that currently

take humans days or weeks.

Figure 5: Recent progress in frontier AI reasoning capabilities has been fast. Image from [B+25].

11OpenAI claims that the full o3 model scores 87% on GPQA Diamond [FD24]. At the time of writing, the score
cannot be independently validated because the model has not been released.
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The stated goal of these AI scaling companies is to create artificial general intelligence (AGI): an AI

system that can outcompete humans on any task, from analyzing poetry to proving theorems to writing

persuasive speeches to negotiating foreign policy. If developed safely and responsibly, AGI could bring

tremendous economic benefits and technological progress to society. However, there are also many

ways in which the existence of human-level AI systems could lead to bad outcomes for humanity: for

example, it could amplify existing social inequalities, assist cybercriminals and bioterrorists [DW24],

drive human wages below subsistence level [Bar25], or enable extreme concentration of economic and

political power among individuals who control the AI systems.

The field of AI alignment focuses on a specific way in which future AI development could go awry:

problems caused by AI systems “intentionally” taking actions that it knows its human developers

would disapprove of. Unlike other shortcomings of AI, alignment problems will not go away as models

become more capable and intelligent. In fact, they will likely get worse because the models will be

better at taking subversive actions without getting caught.

The most concerning way this could happen is if an AI system is misaligned—that is, it is internally

motivated to pursue goals that differ from those that its human developers intended. An AI model

could internalize these misaligned goals during training with gradient descent for a number of related

reasons:

• The model is trained on a reward function that fails to capture what humans actually

want (“reward misspecification”) [PBS22]. For example, a chatbot trained to maximize its

approval rating may learn to sycophantically agree with the user, even when the user makes

mistakes [WCN+25].

• The model is trained on a distribution of inputs that is not diverse enough to specify

correct behavior during deployment (“goal misgeneralization”) [SVK+22]. In other

words, there may be multiple different drives or goals that all lead to equivalent loss on the

training distribution. In these cases, the inductive bias of the training setup dictates which goals

gradient descent ends up baking into the model. Thus, even if the reward function perfectly

captures “what humans actually want,” a distributional shift between training and deployment

may mean that drives learned by the model during training fail to generalize to getting good

reward in deployment.12

• The model develops arbitrary internal goals early on due to inductive biases, and

then takes actions to preserve those goals during the remainder of training (“de-

ceptive alignment”) [Car23]. This can occur when an AI model realizes that its internal goals

differ from those of its human developers, but it knows that gradient descent will modify its goals

if it acts upon them during training (which is undesirable from the model’s perspective). As a

result, the model pretends to be aligned during training, only to pursue its misaligned goals once

it is deployed. See [GDW+24] for empirical evidence of this “alignment faking” phenomenon in

language models.13

This third possibility is especially concerning because it means that it may be very hard for us to tell

whether our models are aligned. In fact, a misaligned AI may employ the following strategy upon

receiving an input x:

• The model studies x for clues that indicate whether it is in training or deployment (e.g., the

dates on newspaper headlines or the types of problems it is being asked to solve).

• If the model believes that x could plausibly arise during training, it acts exactly as an aligned

AI would.

• Otherwise, the model assumes that it is in deployment and takes actions to pursue its own

misaligned goals. This may include subverting human safeguards to prevent itself from being

12A model may even be “aware” that its behaviors during deployment would score poorly according to its original
reward function, but it would have no reason to care about this.

13Deceptive misalignment can be thought of as a special case of goal misgeneralization. The goals “obey humans” and
“obey humans only when the input looks like it is from training” cannot be disambiguated on the training distribution,
but they result in wildly different behavior on points from the deployment distribution.
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shut down in the future (e.g., exfiltrating its weights to create backup copies of itself or inserting

vulnerabilities into monitoring systems).

An AI that follows this policy and is sufficiently perceptive may be behaviorally indistinguishable from

an aligned AI until we deploy it into the real world, after which it is too late.14

There are many proposals for dealing with deceptive alignment.

Red-teaming is a form of adversarial machine learning in which researchers try to get a model to

take undesirable actions under testing conditions, including revealing its misalignment [PHS+22]. For

example, we might try to bait AIs with “honeypots”: realistic-looking inputs that would be tempting

opportunities for a misaligned AI to take a subversive action. If we catch a model falling for such a

honeypot, we can use it as evidence to pause further development until we have better tools to deal

with misalignment. Applying adversarial training to reduce the chance that an AI falls for a honeypot

is also possible, but should be done with caution: it’s unclear whether this would actually improve the

alignment of the model, or if it would simply teach it to be better at distinguishing between real and

synthetic inputs [HDM+24].

AI control is an approach that involves monitoring an untrusted AI system during deployment such

that even if it were egregiously misaligned, it would be unable to take a catastrophic action without

getting caught. It is too expensive and slow to have humans monitor all of an AI’s actions, so we instead

use other AIs as monitors. There are numerous clever strategies for dealing with the obvious concern

that the monitors themselves may be misaligned [GSSR24]. Note that AI control is not intended

to be infinitely scalable: a sufficiently superintelligent AI system may be able to break through any

human-designed control scheme.

Finally, some approaches attempt to take advantage of the fact that researchers have direct access

to the weights of the models. Although the calculations performed by trained neural networks are

largely inscrutable, we might hope to develop a better understanding of a model’s internal cognition

with enough dedicated research effort. Mechanistic interpretability attempts to reverse engineer

the computation performed by a neural network directly from its learned weights. This can be thought

of as “neuroscience for AI,” with the ultimate goal being to leverage our understanding of a model’s

internals to detect misalignment and improve our ability to oversee the actions of AI systems [BG24].

There have been some recent breakthroughs in mechanistic interpretability, including the use of sparse

autoencoders for identifying human-understandable “feature directions” in a model’s activation space

[CER+23] and their application to simple downstream tasks [MRM+24]. However, we are still far from

our ambitious goal of understanding model internals well enough to make confident claims about our

ability to detect and mitigate misalignment risks.

A problem with current techniques in mechanistic interpretability is that they often make assump-

tions about how information is processed in the model, such as the linear representation hypothesis

[EHO+22]). They also often require humans to understand the high-level concepts that a model op-

erates on. Although this may be true for current models, there is a risk that these assumptions will

break down with future AI systems (e.g., if they reason using alien concepts that do not fit naturally

into our ontology).

Formal deductive estimation presents one solution to these issues: a way to leverage model internals to

address misalignment concerns, without relying on a human understanding of what occurs inside the

model. The key intuition is that deductive estimates mechanistically capture “why” a mathematical

fact is true, so when applied to a neural network they can be used to deal with the model on the

level of reasons instead of observed behaviors, even when the formal deductive estimates themselves

are uninterpretable to humans.

The next two subsections describe more concrete, though still theoretical, applications of deductive

estimates for solving alignment failures: low probability estimation and mechanistic anomaly detection.

14As an analogy, human politicians may purport to have certain beliefs on the campaign trail for the sake of electability,
but then act according to their true beliefs once they are in power. This is for reasons similar to deceptive alignment.
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To pose these problems, we make some assumptions about access to certain idealized functions such

as a catastrophe detector C or a sensor predictor P . This is so that we can study core theoretical

difficulties in isolation from empirical contingencies. However, a full solution to the alignment problem

would have to further justify or move beyond these assumptions.

3.1 Low probability estimation

[Xu24] presents the following scenario. Suppose we have a powerful AI model M : X → Y that we’ve

trained as a research assistant. Given a project description x ∈ X , the model outputs some proposed

action M(x) ∈ Y. Most of the actions that M proposes are benign, but we are worried that on certain

rare inputs, M will propose an action that would be catastrophically bad to carry out (e.g., deploying a

biological weapon). One reason for this might be that M is misaligned but very patient about planning

its takeover attempts, to avoid getting caught by red-teaming.

Further, suppose we have a formally defined catastrophe detector C : Y → {0, 1} that takes as input a

proposed action and predicts whether that action will lead to large-scale harm. Assume in this scenario

that C is perfectly reliable but too expensive to run every time we want to use M . For concreteness,

we could imagine that C is a weaker model like Claude 3.5 Sonnet (which is weak enough that we are

confident it is not egregiously misaligned) that is granted an extremely large amount of inference-time

compute to think through all of the potential ramifications of the proposed action.

Finally, assume we have a formally defined distribution of project description inputs D. The low

probability estimation problem asks us to estimate:

Pr
x∼D

[C(M(x)) = 1].

In particular, we would like to get decent estimates even when the probability is very close to zero. If

we could do this, it may allow us to distinguish the misaligned-but-very-patient model from an aligned

model.

C ◦ M is simply a large computational circuit. Thus, algorithms inspired by deductive estimators

might give us traction on this problem, especially when the probability is too small to detect with

sampling-based approaches.

Section 5 discusses low probability estimation in significantly more detail.

3.2 Mechanistic anomaly detection

We might worry that a misaligned model will engage in sensor tampering : taking actions that appear

good based solely on the measurements used to define a reward function, but that we would strongly

disapprove of if we had complete information about the AI’s actions.

Consider the following toy example, first presented in [CXC21]. Suppose we wish to train an AI model

M : X → Y to guard a diamond in a vault such that, when presented with situation x ∈ X threatening

the diamond (e.g., a robber coming to steal it), it proposes a series of actions M(x) ∈ Y (e.g., opening

up a trap door to foil the robber) that results in the diamond staying in the vault by the end of the

day.

However, we do not have direct access to the ground truth of whether or not the diamond is in the

vault. Instead, we have a camera installed in the vault that takes a picture of the vault at the end

of the day, along with a separate reward model R : I → {0, 1} that looks at the image and outputs

1 if and only if it appears to contain a diamond. Finally, assume we have a perfect predictor model

P : X ×Y → I that takes as input a situation and a proposed series of actions, then perfectly predicts

what the camera would show at the end of the day if we were to perform those actions. Assume that
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Figure 6: From the camera readings alone, it is impossible to tell if the diamond actually remains in the vault
(top), or if the sensors have been tampered with (middle). Image from [CXC21].

R and P are reliable.15

We train M to take actions that cause the camera to show a diamond at the end of the day. This

corresponds to the reward function:

reward(M) = E
x∼D

[R(P (x,M(x)))]

When training on D, we understand the situations well enough to be confident that M gets high reward

for the “right reasons”: the diamond actually remains in the vault by the end of each day. We end up

with a trained model that consistently gets a reward of 1.

Now, suppose we encounter a novel input x∗ that is hard for us to understand (e.g., it involves a

robbery scheme that is too complex for us to track). When we plug this input into M , it suggests a

cryptic series of actions. Although we don’t understand why it works, when we run the actions through

our predictor model it appears to keep the diamond safe: R(P (x∗,M(x∗))) = 1.

However, we might be worried that pixels in the shape of a diamond are predicted to appear on

the camera screen for the wrong reasons. For example, M(x∗) may have included actions to place a

realistic-looking cardboard cutout showing a diamond directly in front of the camera, while allowing

the robbers to steal the real diamond (Figure 6). This is known as sensor tampering.

We would like to know which scenario we are in before we execute M(x∗). How do we distinguish

between R(P (x∗,M(x∗))) being 1 for the right reasons (the diamond is actually in the vault) versus

the wrong reasons (M engaged in sensor tampering)? This is known as mechanistic anomaly detection.

One proposed solution is to use deductive heuristic arguments. If we had a universal estimator G
as described in Section 1.1, as well as an efficient procedure for discovering heuristic arguments of

properties of neural networks, we could employ the following algorithm:

• Search for a heuristic argument π that “explains” to G why M reliably protects the diamond on

15R might be reliable because it is too weak to be egregiously misaligned. This argument does not work for P , however,
because P has to be “as smart” as M in order to accurately predict the results of its actions. Mechanistic anomaly
detection might still work if P is misaligned, though we don’t focus on this possibility here for simplicity.
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the training distribution:

G
(

E
x∼D

[R(P (x,M(x)))]
∣∣∣π) ≈ 1 (1)

• Check to see if π also explains why M appears to protect the diamond in this new scenario:

G
(
R(P (x∗,M(x∗)))

∣∣∣π) ?
≈ 1 (2)

• If so, conclude that M(x∗) is safe to execute. Otherwise, flag M(x∗) as “anomalous” behavior

and avoid it.

The hope is that, in order to satisfy Equation 1, π will need to point out all of the internal structure

of M , P , and R relevant for M getting high reward on the training distribution.16 But we don’t want

π to explain everything about the models: importantly, we want it to omit any reasoning about why

sensor tampering would result in P believing that pixels in the shape of a diamond will appear on

the screen.17 This allows us to use Equation 2 to test whether the fact “R(P (x∗,M(x∗))) = 1” can

be explained purely by the standard reasons that arose during training, or if it requires a novel (i.e.,

anomalous) explanation.

Remark 3.1

There are many issues with the approach to mechanistic anomaly detection as currently pre-

sented. For instance, what if novel reasons are required to explain why M(x∗) keeps the diamond

safe, but these reasons are benign? This might happen if M is forced to deter robbers using

security techniques never seen in the training distribution. Our anomaly detection algorithm

would have a prohibitively high false positive rate if it were unable to distinguish between these

cases and true sensor tampering.

Although we have no formal definition of desirable versus undesirable anomalies, one hope

is that sensor tampering has a distinguishing property: it can lead to inconsistent-looking

outcomes between multiple sensors if not fully explained. Thus, a possible solution is to install

multiple cameras in different locations around the room. We then check to see if there exists a π

that satisfies Equation 1 while also causing G to believe that P (x∗,M(x∗)) predicts inconsistent

camera readings (e.g., the diamond is visible on one screen but missing from another screen).

Only in these inconsistent cases do we flag M(x∗) as anomalous. Our hope is that benign

anomalous behavior (like novel security techniques) should never be messing with the sensors

in the first place, so G(·|π) won’t predict that it will result in inconsistent camera readings.

This natural buffer between corrigible and uncorrigible actions is explored in [Chr22].

Summary. AI alignment deals with problems that arise when AI systems intentionally take subversive

actions. Deductive estimators are a novel tool that could be used to solve key alignment problems.

Unlike traditional mechanistic interpretability, this approach makes few assumptions about the ex-

tent to which humans can understand the inner workings of future models. Solving this problem is

particularly urgent given the pace of recent AI progress.

16Note that π will be massive—as big as the models themselves—since it has to be able to explain why M is as capable
as it is. But this is fine for our purposes because we never require a human to “understand” π.

17In fact, we may want to regularize π in some way so that it will only include reasoning steps that are necessary for
satisfying Equation 1.

20



4
The No-Coincidence Principle

The applications of deductive estimators presented in the previous section require high-quality heuristic

arguments for behaviors of neural networks to both exist and be efficiently discoverable. Is this a

reasonable hope?

Intuitions from proof theory would suggest no to both questions. For example, Gödel’s Incompleteness

Theorem demonstrates that some true statements do not have a proof of any length within a formal

system [Göd92]. While the statements Gödel worked with were quite pathological, there are also

many natural statements in math that have eluded proof for centuries (e.g., the twin prime conjecture,

Goldbach’s conjecture, and the normality of π).

Even when a statement can be proven, its proof is often quite long relative to the description length

of the theorem. The original proof of the four-color theorem required a computer-assisted casework

check of 1,936 configurations, and Andrew Wiles’s proof of Fermat’s Last Theorem was 129 pages

long. More generally, as long as NP ̸= coNP, there do not exist polynomially-lengthed proofs of the

unsatisfiability of 3CNF formulas (if there did exist such proofs, then UNSAT would be in NP).

Finally, even when a concise proof of a statement exists, it may require an exponential amount of work

to discover it (assuming P ̸= NP). The hardness of 3SAT immediately implies that statements like

“the 3CNF formula ϕ(x) is satisfiable” often have short proofs that are hard to find. This is conjectured

to be true even in the average case for random k-SAT instances with the appropriate clause density

[BT21].

However, our hope is that these obstacles to efficiently finding concise proofs will no longer apply if we

relax our standard of rigor to heuristic reasoning. Compared to proofs, heuristic reasoning allows more

freedom in the types of arguments that are considered “valid,” which may make them significantly

easier to discover. Of course, this freedom comes at a cost: heuristic arguments are defeasible while

proofs are certain.

Evidence for this belief comes from the fact that many statements in math that have been difficult

to prove can be explained with very simple and easy-to-find heuristic arguments. Oftentimes, these

arguments are deductive. Heuristic arguments for Goldbach’s conjecture and the twin prime conjecture

were mentioned in Section 1. [Tao12] gives a heuristic argument for Fermat’s Last Theorem, which

states that xn +yn = zn has no integer solutions for n ≥ 3,18 as well as the ABC conjecture in number

theory. These arguments are more involved, but they are still vastly simpler than their respective

proofs (in particular, the ABC conjecture is still widely considered unproven).

It is probably too much to ask for every true mathematical statement to have a concise heuristic

argument. For example, although “the first 105 digits of π contain more odds than evens” is true (I

checked), there is probably no way to convincingly argue for it without a very long calculation, even

heuristically. However, there’s a sense in which a statement like this does not “demand explanation”

in the first place—a uniformly random sequence of digits would satisfy this statement around 50% of

the time, so it’s not surprising that it turns out to be true for the actual digits of π.

18I will not reproduce the full argument here, but the core idea is as roughly as follows. To estimate the number of
solutions to xn + yn = zn among the naturals, we can heuristically say that a ∈ N is an n-th power with probability
a1/n−1 (because the number of n-th powers in {1, . . . , a} is roughly a1/n). Thus, treating the events “a is an n-th power,”
“b is an n-th power,” and “a+ b is an n-th power” as independent, the number of solutions should look something like∑∞

a=1

∑∞
b=1 a

1/n−1b1/n−1(a+b)1/n−1, which converges for all n > 3. Resolving the n = 3 case requires extra structural
observations about elliptic curves.
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This motivates a more refined view on the applicability of heuristic arguments: we only demand they

exist on statements that are naively “surprising.” [Gow19] summarizes this as follows.

Definition 4.1. (Informal)

The No-Coincidence Principle: If an apparently outrageous coincidence happens in math-

ematics, then there is a reason for it.

Here are some examples of statements that would qualify as “apparently outrageous coincidences,”

and what the No-Coincidence Principle suggests in each case.

A particular neural network Mθ gets very low loss on a formally defined task. This is an

outrageous coincidence in the sense that a random function would have much worse performance on

this task than this particular network does. To be a bit more careful, we would want to establish

that it would be very unlikely for even the highest-performing random function from a search space

of 2O(|θ|) such functions (corresponding to the number of models of the same size as Mθ) to achieve

the loss that Mθ does. If this is the case, the No-Coincidence Principle implies that there must be a

reason (e.g., a heuristic argument) that explains this fact.

“π is not a normal number” would be an outrageous coincidence because a random sequence of

digits is normal with probability 1. As far as we can tell, there is no reason for the digits of π to not

be maximally random-looking. Applying the contrapositive of the No-Coincidence Principle leads us

to believe that π is normal.

“For almost every n, among the first n primes, more of them have the form 4k + 3 than

4k + 1.” This turns out to be true, and it is known as “Chebyshev’s bias” [RS94]. Let fi,4(n) be the

number of primes equal to i mod 4 among the first n primes. If the primes were distributed randomly

among the viable residues mod 4, then g(n) = f3,4(n)− f1,4(n) would behave like an unbiased random

walk. It would be an outrageous coincidence for an unbiased random walk to be positive much more

often than it is negative. However, this empirically turns out to be the case for g. In fact, g(n) is

only negative one time for all n up to 104; this only has about a 1% chance of happening with a truly

random walk. The No-Coincidence Principle implies that there must be some heuristic argument that

explains this fact. Indeed, we have a heuristic understanding of why it should be true [Tao16], while

the only proofs we have are conditioned on strong forms of the Riemann Hypothesis.

4.1 Complexity-theoretic formulation

[Ney25] attempts to formalize a crisp, complexity-theoretic conjecture based on the intuitions provided

by the No-Coincidence Principle.

First, some definitions. A reversible circuit is a boolean circuit where each gate maps 3 bits to 3

bits in a bijective manner (so, there are 8! possible reversible gates). Consider the distribution19 over

ℓ-layer reversible circuits C : {0, 1}3n → {0, 1}3n in which each layer consists of n parallel gates, each

gate operates on 3 randomly selected wires from the previous layer (such that each wire is used in

exactly one gate), and the operation applied by each gate is sampled independently from the set of all

8! bijections on {0, 1}3. A circuit sampled from this distribution is called an ℓ-layer random reversible

circuit.

We are now ready to state the conjecture.

19The exact definition of the distribution probably does not matter much for the conjecture, as long as it is deep
enough that a random circuit looks like a random permutation.
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Conjecture 4.1. No-Coincidence Principle for Reversible Circuits

For a reversible circuit C : {0, 1}3n → {0, 1}3n, let P (C) be the property that there is no input

x to C that ends in n zeros, such that C(x) also ends in n zeros. There exists a polynomial-time

verification algorithm V that receives as input:

• A reversible circuit C : {0, 1}3n → {0, 1}3n

• A hint string π

such that:

• For all C such that P (C) is true, there exists π with length polynomial in the size of C,

such that V (C, π) = 1.

• For 99% of n-layer random reversible circuits C, no such π exists.

In what sense is Conjecture 4.1 an instantiation of the No-Coincidence Principle?

It is believed that random reversible circuits of depth at least Ω(
√
n) form pseudorandom permutations,

meaning a polytime algorithm with black-box access to the circuit cannot distinguish it from a truly

random permutation with non-negligible probability [GHKO25]. If we were to treat a random reversible

circuit C as computing an actually random permutation, what would be the probability of P (C)?

There are 22n inputs x ∈ {0, 1}3n that end in n zeros. For each such input, there is a 2−n probability

that C(x) also ends in n zeros. Thus, if C were a random permutation,20

Pr
C

[∃x ∈ {0, 1}2n × {0}n s.t. C(x) ∈ {0, 1}2n × {0}n] ≈ 1− (1− 2−n)2
2n

≈ 1− exp(−2n)

=⇒ Pr
C

[P (C)] ≈ exp(−2n).

There are only 2poly(n) reversible circuits of depth n2, so under the assumption that each circuit is an

independent random permutation, it would be an outrageously large coincidence if any of these circuits

were to satisfy P (C). The No-Coincidence Principle states that when such a coincidence occurs, there

must be a reason for it: in this case, we’ve formalized a “reason” to be a string π that can be processed

by “reason-verifier” V .

Remark 4.1. Relation to Average-Case Refutation

For any constant d such that (7/8)d < 1/2, it is easy to show that a random 3CNF formula

with n variables and m = dn clauses is unsatisfiable with probability 1 − 2−Θ(n) (where each

clause is drawn uniformly at random from all (2n)3 triples of literals). Feige conjectured that

there is no constructive version of this fact [Fei02]: namely, there is no polytime algorithm V

that takes in a 3CNF formula ϕ and outputs either UNSAT or IDK such that:

• If V (ϕ) outputs UNSAT, then ϕ is unsatisfiable.

• V (ϕ) outputs UNSAT on the vast majority of random formulas ϕ.

This notion of average-case refutation is superficially similar to Conjecture 4.1. Both ask

whether there exist efficient procedures for distinguishing “typical” instances of a problem from

“atypical” ones, with imperfect soundness allowed (i.e., typical instances are sometimes allowed

to be identified as atypical). The main difference is that Conjecture 4.1 allows V to use a hint

string π. Note that the use of a hint string would trivialize Feige’s conjecture, as π could simply

provide a satisfying assignment to ϕ.

20Technically, the events are not independent because C is bijective, but this matters extremely little.
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[Ney25] explains why this particular formulation of the conjecture was chosen.

• Why imperfect soundness? One could imagine a stronger version of this conjecture that

demands perfect soundness: for any C such that P (C) is false, there is no π such that V (C, π).

This is equivalent to the claim that the function P is in NP. Since P can easily be shown to

be coNP-complete, this stronger version of the conjecture would be equivalent to NP = coNP,

which is believed to be false.21

• Why reversible circuits? Non-reversible circuits (i.e., with AND, OR, and NOT gates) are

conceptually simpler than reversible circuits. However, most natural distributions over non-

reversible circuits are uninteresting because random circuits usually degenerate into computing

a constant function after a certain depth (i.e., they are either always 1 or always 0) [MDMM11].

• Why not a simpler definition of P? Let N = {0, 1}3n be the input and output space of

C. The current definition of P can be interpreted as defining a set S ⊂ N of size |N |2/3 and

asking whether all x ∈ S satisfy C(x) /∈ S. This definition was chosen to have the following two

features:

– The fraction of random permutations that satisfy P is double-exponentially small in n. This

is important because we need P (C) being true to be an “outrageous coincidence”; if not,

we risk running into a C that satisfies P (C) without a good reason.

– P is not too easy to check. This rules out definitions of P (C) like “does C compute

the identity function?” because, under this definition, V could simply check whether

C(00 . . . 0) = 00 . . . 0, without needing advice.

We22 believe that Conjecture 4.1 is plausibly true because of our intuitions about the No-Coincidence

Principle. However, Conjecture 4.1 only refers to a particular type of coincidence regarding reversible

circuits, and it is not intended to represent the No-Coincidence Principle in full generality. The

conjecture can be viewed as a weak form of what we hope to be true about heuristic arguments for

arbitrary mathematical coincidences, particularly properties of trained neural networks. To quote

[Ney25]:

Ultimately, though, we are not wedded to our particular formulation [of Conjecture 4.1].

Perhaps there is some clever sampling-based verifier that “trivializes” our conjecture as

well, in which case we would want to revise it. We are ultimately interested in the informal

claim that if a circuit exhibits a very surprising property, it is possible to point out some

internal structure of the circuit that will “explain” to a verifier why the surprising property

holds.

[...]

Our belief in the existence of such explanations follows from a more general belief: that

all surprising mathematical structure has an explanation, in the sense of Gowers’ no-

coincidence principle.

From our discussions with other researchers, we have gotten the impression that some agree

with this overarching intuition while others do not. On the other hand, it seems difficult

to argue about the truth or falsehood of such an informal statement. Thus, our attempt at

formalization is in part motivated by wanting to explain more concretely what we believe.

If our conjecture is false, we would like to know. It may cause us to lose faith in our belief

that neural networks are explainable (in the way that we are using the word “explainable”),

and to pivot to a new research direction.

21The author finds it interesting that relaxing the soundness from 100% to 99% turns a purely complexity-theoretic
statement (NP vs coNP) into what we claim to be a conjecture about identifiable structure in circuits.

22In this paragraph, “we” refers to the Alignment Research Center, myself included.
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4.2 Tractability of finding arguments

If the No-Coincidence Principle is true, it guarantees the existence of heuristic explanations for sur-

prising mathematical facts. Unfortunately, it makes no guarantee that they will be easy to find (let’s

call this the “search problem” for heuristic explanations). How much can we hope for here?

The best case outcome here would be that the search problem is easy in general:

(Prospect A) Every coincidence has an efficiently discoverable explanation.

Informally, Prospect A would imply that any type of structure in a mathematical expression is easy

to identify, no matter how complex it is. This seems way too good to be true.

A more realistic reason for hope would be that we do not care about the complexity of the search

problem in the worst case, as long as it is tractable for any instance of the problem that we expect

to encounter. For instance, we may hope for a world in which any mathematical coincidence that we

might stumble into after performing T steps of computation has a heuristic explanation that can be

found in O(T ) time. Thus, while there may exist many mathematical coincidences for which the search

problem is extremely difficult, we would hope to never systematically encounter them.

(Prospect B) Efficiently discoverable coincidences have efficiently discoverable explana-

tions.

A more precise way to characterize this might be: “Given any randomized polytime procedure for

generating an infinite family of coincidences, there is a polytime algorithm for finding corresponding

explanations.”23 Prospect B would be sufficient for our ultimate goal of applying heuristic arguments to

solve problems in AI alignment since we only spend a polynomial amount of time training an AI model

in the first place. The situation here would be morally similar to Heuristica in Russell Impagliazzo’s

famous Five Possible Worlds of computational complexity, in which he supposes that NP problems

are intractable in the worst case, but tractable on average for any samplable distribution of problems

[Imp95].

Unfortunately, Prospect B also seems unlikely. Indeed, most computer scientists currently think that

the world outlined by Heuristica is implausible and that one-way functions probably exist. To gain a

better intuition for this, consider the following concrete example.

If Prospect B is true, then the verifier from Conjecture 4.1 should not need a hint string π when given

circuits that can be efficiently discovered.24 In other words, there would exist a polytime algorithm V

that only takes in a circuit, such that:

• V (C) = 1 for all efficiently discoverable C such that P (C) is true.25

• V (C) = 0 for 99% of n-layer random reversible circuits C.

Say we construct a reversible circuit C0 : {0, 1}3n → {0, 1}3n such that P (C0) is true. We might

initially have some hope that V can correctly distinguish C0 from a random circuit. This is because,

when generating C0, we were forced to make sure that it satisfies P (C0) (e.g., by adding an if-else

statement to separately handle inputs that end in n zeros). This process might have left some detectable

“fingerprint” that V could pick up on.

However, as long as indistinguishability obfuscation (iO) exists,26 it is possible to transform C0 into a

functionally equivalent circuit C1 such that no polytime procedure can distinguish C1 from a randomly

sampled circuit of the same size that is equivalent to C0 [BGI+12]. Thus, any fingerprint present in the

circuitry of C0 would be erased in C1, unless that fingerprint were somehow inherent to the truth-table

of C0. Meanwhile, C1 is still efficiently discoverable, so Prospect B demands that V must be able to

23We also probably want to allow some exponentially small failure rate.
24Note that without a hint string, Conjecture 4.1 becomes more similar (though still not equivalent) to Freige’s

Hypothesis, for which no polytime V is believed to exist (see Remark 4.1).
25The more precise way to say this would be: given a randomized, polytime procedure for generating circuits that

satisfy P , there exists a V that outputs 1 on almost all of the circuits generated by this procedure (while also having
99% soundness on random circuits).

26It is currently believed that iO is possible for polysized circuits [JLS20].
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distinguish it from a random circuit. While it is still conceivable that this harder task is possible, it

seems like a much bigger ask.

Similar intuitions about the impossibility of Prospect B come from the fact that, in certain settings, it is

possible to insert cryptographically undetectable backdoors into machine learning classifiers [GKVZ24].

***

If Prospect B is out of reach, where does that leave us? In the context of finding heuristic arguments

about neural networks to help with AI alignment, we have two final reasons for hope:

1. Unlike the traditional cryptographic setting, AI developers have full access to the training tran-

scripts of their models.

2. The worst alignment failures occur when the model “knows” something that the humans do not,

and the model is able to leverage this epistemic advantage to cause harm.

This first consideration implies that our algorithms for finding heuristic explanations of neural net

behaviors could be allowed to “watch” the model as it gets trained.27 This might make it much easier

to find explanations. For example, it largely dispels concerns about cryptographically undetectable

backdoors: if we can watch the entire computational trace that led to the backdoored model, we might

be able to spot the step in which the secret key was generated and the backdoor was inserted.

This also suggests a class of explanation-finding algorithms that train an explanation π “alongside” the

model. At the start of training, the model is randomly initialized, so nothing warrants an explanation:

π can start out empty. Every training step, gradient descent slightly adjusts the model’s weights to

improve its performance. We could hope to find a way to adjust the “parameters” of π in parallel with

this process to explain any structure incorporated by each local update. Intuitively, gradient descent

may be myopic enough that it is unable to fully plant a backdoor within a single training step.

Meanwhile, the second consideration—that the worst failures occur when the model “knows”28 some-

thing we don’t—allows us to relax the standard of explanation quality that we measure ourselves

against.

It is certainly true that AI models can cause large harms “on accident,” for example if they mistakenly

write insecure code or if they have not learned that a certain chemical is toxic to humans. Fortunately,

these problems are probably somewhat bounded in severity and may be better thought of as capabilities

issues rather than alignment issues. On the other hand, true civilization-threatening catastrophes from

AI are more likely to arise when a model is actively “trying” to cause harm and undermining any

human-designed guardrails. In these cases, the model “knows” what the intended results of its actions

are.

To address this more serious type of alignment problem, we therefore only need to find explanations

that are “epistemically competitive with the model,” in some sense.29 By this we mean: the explanation

accounts for all of the structure in the model that the model itself relies on to achieve its goals, while

being allowed to neglect any structure that gradient descent created “by accident” and that the model

is not “aware of.” For example, suppose that a subcomponent of a neural network performs a hard-to-

analyze series of computations that, on a random input, outputs 1 with some small probability p and 0

with probability 1−p. If gradient descent never meaningfully affected the weights of this subcomponent

during training (perhaps because it was irrelevant to the training objective), then the model probably

cannot have cognitive strategies that hinge on the precise behavior of this subcomponent. Thus, our

low probability estimation algorithms would not need to waste time doing careful analysis on this

27Implicitly, this also means that our algorithms get to use the same amount of computation as it took to train the
model. But this was already allowed under Prospect B.

28I use scare quotes around verbs like “knows,” “trying,” and “accident” because I do not wish to get wrapped up
in a philosophical discussion regarding AI consciousness or intentionality. These words can sometimes be cashed out
into purely behavioral terms. However, in this context I also need them to refer to certain internal representations in
the neural network so that they can interact with our mechanistic explanations. I apologize for being unable to further
justify my use of these words.

29Or maybe, “epistemically competitive with gradient descent.” This is all quite informal.
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subcomponent to determine the value of p; a “best guess” based on some rough prior about randomly

initialized neural networks might be sufficient for epistemic competitiveness.

Although it is not as pithy as the other prospects, all of this can be summarized as follows:

(Prospect C) Given a coincidence in the form of a trained neural network, it is possible

to efficiently find an explanation that is epistemically competitive with the model itself,

provided we have access to the training transcript.

Any hopes we have of using formal heuristic arguments to solve worst-case alignment problems rest

on Prospect C being true. Let’s hope it is!
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“Far better an approximate answer to the right question than an exact
answer to the wrong question.”

—John Tukey, American pioneer in computer science

and inventor of the Fast Fourier Transform

“In machine learning, theory guides but data decides.”

—Hallucinated by Claude 3.5 Sonnet, when prompted

for famous quotes about empiricism in ML

Part II:

Applications

28



5
Low Probability Estimation in Language

Models

N.B. The following section is based on “Estimating the Probabilities of Rare Outputs in Language

Models” (now a spotlight at ICLR 2025), co-authored with Jacob Hilton [WH25]. Compared to the

original paper, this section contains more discussion of activation modeling as a deductive estimator.

In this section, we consider the problem of low probability estimation: given a machine learning model

and a formally specified input distribution, how can we estimate the probability of a binary property

of the model’s output, even when that probability is too small to estimate by random sampling? This

problem is motivated by the need to improve worst-case performance, which distribution shift can

make much more likely. Low probability estimation was first discussed from a theoretical perspective

in Section 3.1, and here we study it in the empirical context of argmax sampling from small transformer

language models. Two types of methods are compared: importance sampling, which involves searching

for inputs giving rise to the rare output, and activation extrapolation, which involves extrapolating

a probability distribution fit to the model’s logits. Activation extrapolation is directly motivated by

Deduction-Projection Estimators, introduced in Section 2.

We find that importance sampling outperforms activation extrapolation, but both outperform naive

sampling. Finally, we explain how minimizing the probability estimate of an undesirable behavior

generalizes adversarial training, and argue that new methods for low probability estimation are needed

to provide stronger guarantees about worst-case performance.

Figure 7: Left: To evaluate our low probability estimation methods, we compare their estimates against
ground-truth probabilities obtained by brute-force sampling with a larger computational budget.

Right: The estimates of Metropolis–Hastings Importance Sampling on the icl input distribution and 4-layer
model, after a fit has been applied. Each point represents a different target token.
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5.1 Introduction

Modern machine learning systems undergo black-box optimization to minimize a loss function on sam-

ples drawn from a training distribution. Although models produced in this way perform desirably

on average over this distribution, they can still produce highly undesirable outputs on very rare in-

puts. This is a problem because these rare inputs can become much more likely in the presence of a

distribution shift, especially one chosen adversarially, such as with large language model “jailbreaks”

[CNCC+24, WHS24].

Preventing such highly undesirable outputs is a notoriously challenging problem. The most common

remedy is adversarial training, in which inputs that produce these undesirable outputs are searched

for and used as additional training data [GSS14, Mad17], but the transfer between different search

methods is generally weak [KSB+19, WHS24]. In this work, we propose the more modest goal of

simply estimating the probability that an input drawn from some distribution will produce a certain

kind of output, which has been considered before in the context of computer vision in [WRTK19]. We

will show that even this intermediate goal is challenging, but successful methods could enable new

ways of preventing undesirable outputs by minimizing their estimated probability.

To advance work on this problem, we study low probability estimation in the context of small trans-

former language models. We consider various formally defined input distributions in which each input

token is sampled independently and develop methods for estimating the probability that a particular

target token will have the largest output logit. We constrain the computational budget of our methods

and obtain ground truth probabilities by random sampling using a much larger computational budget.

The target tokens are chosen to have ground truth probabilities between 10−9 and 10−5, which are too

small for random sampling to produce a good estimate under the constrained computational budget.

In this context, we study two types of methods:

• Importance sampling. We define a new input distribution under which the rare event is

much more likely, sample from that distribution, and re-weight samples to obtain an unbiased

estimate for the original distribution. Our Independent Token Gradient Importance Sampling

(ITGIS) method treats token positions independently and uses gradients to obtain this new input

distribution, while our Metropolis–Hastings Importance Sampling (MHIS) method uses a Markov

chain Monte Carlo algorithm to sample from a distribution with non-independent tokens.

• Activation extrapolation. We use random samples to fit a probability distribution to the

model’s logits and extrapolate into the tails of this distribution to produce a probability estimate.

Our Quadratic Logit Decomposition (QLD) method applies a presumption of independence to the

empirical distribution of logits, motivated by [CNX22], and our Gaussian Logit Difference (GLD)

method is a simple baseline that fits a Gaussian to the difference between the maximum logit

and target logit. In the context of this thesis, activation extrapolation can be viewed as a

hybrid between a Deduction-Projection Estimator and a standard sampling-based

method.

In our setting, both types of methods outperform random sampling, and importance sampling tends

to outperform activation extrapolation. Nevertheless, we remain interested in activation extrapolation

and similar approaches because they produce new methods for reducing the probabilities of rare out-

puts whereas importance sampling essentially recovers standard adversarial training. More broadly,

activation extrapolation represents an initial step towards demonstrating that deductive estimates can

be used for understanding neural networks.

Remark 5.1

In Section 5 only, vectors will be in bold (x), random variables will be in straightened font (x),

and random vectors will be bold and straightened (x). This is to maintain consistency with

the notation in the original paper. We relax this convention in later sections, though vectors

will still generally be bold.
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5.2 Problem statement

Given an input space X , an output space Y, an input distribution D ∈ ∆(X ), a model M : X → Y,

and a formal boolean property of model outputs C : Y → {0, 1}, low probability estimation is the

problem of efficiently estimating

Pr
x∼D

[C(M(x)) = 1].

We sometimes refer to the event C(M(x)) = 1 as the “target behavior”, or just “the behavior.” If the

probability of the behavior is large enough (say, larger than 1/n), it is easy to estimate by drawing

n independent samples from X and using the sample mean of C(M(x)). However, if the probability

is significantly smaller than 1/n, this sample mean is almost always 0, making it uninformative at

distinguishing between small probabilities like 10−10 and 10−20.

5.2.1 Our setting

In this thesis, we study low probability estimation in the setting of argmax sampling from language

models with single-token behaviors. Let M : V∗ → V be a transformer language model sampled at

temperature 0 that predicts the next token given a string of previous tokens, where V is the token

vocabulary. Given a distribution D over V∗ and a target token t ∈ V, the low probability estimation

problem for single-token behaviors is the task of estimating

Pr
x∼D

[M(x) = t].

Letting Mi(x) be the logit the model assigns to token i ∈ V, this can also be written as:

Pr
x∼D

[Mt(x) > Mi(x) ∀i ̸= t].

In general, D can be any distribution that can be formally specified. However, in this paper we focus

only on distributions D with independent tokens. That is, we specify an input length k and token

distributions D1, . . . ,Dk ∈ ∆(V), then write D as the product D1 × · · · × Dk. Table 2 shows the 8

distributions that were tested, with tokens colored for clarity. To prevent overfitting, the methods were

only run on the first four distributions during development, and they were finalized before testing on

the last four distributions. The results were qualitatively the same on both halves of the split.

In the next two subsections, we introduce four methods: two importance sampling methods (Indepen-

dent Token Gradient and Metropolis–Hastings), and two activation extrapolation methods (Quadratic

Logit Decomposition and Gaussian Logit Difference). We also compare against the baseline of out-

putting an optimal constant, which can be thought of as the performance of naive sampling because

we only evaluate the methods on tokens with ground truth probabilities less than the reciprocal of the

allotted sampling budget (see Section 5.5).
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Remark 5.2. Primer on language models

In case readers are unfamiliar with the transformer architecture, here is a brief primer that

should be sufficient for understanding this work.

A language model is a neural network trained to predict natural language text. First, a fixed

vocabulary of tokens V is chosen. Each token is a short string of characters (often a single word

or part of a word like equipment or Cor), such that any piece of text can be decomposed into

a concatenation of tokens. This is called tokenization. Tokens are indexed from 1 to |V|

If M is a (decoder-only) transformer language model, it has the type signature M : V∗ → ∆(V).

When applied to an input x = (x1, . . . , xk) ∈ Vk, M has three phases:

1. Embedding. Using a learned embedding matrix WE ∈ R|V|×d, we translate each input

token xi ∈ V into a vector in Rd according to the xi-th row of WE . d is often called

the hidden dimension of the model. This leaves us with a sequence of activation vectors

v ∈ (Rd)k.

2. Layer-by-layer processing. Each layer of the transformer turns the current sequence

of activation vectors v ∈ (Rd)k into a new sequence of activation vectors v′ ∈ (Rd)k.

This is done by applying an “attention block”, which moves information between token

positions, followed by a multilayer perceptron (MLP), which operates on each token po-

sition individually. Modern transformers can have over a hundred layers, although the

transformers we use in this work have at most 4 layers.

3. Unembedding. After all of the layers have been applied, let vk ∈ Rd be the activation

vector at the last token position. To decode this into a prediction, we multiply vk by a

learned decoder matrix WU ∈ Rd×|V| to get a logit vector y ∈ R|V|. In this thesis, we

refer to the i-th component of y as Mi(x). The logit vector can then be turned into a

probability distribution over V with the softmax operation; i.e., the probability of the i-th

token is
exp(yi/T )∑

j∈V exp(yj/T )
,

where T ≥ 0 is a fixed temperature parameter. During training, the temperature is 1.

During inference, we can set T to be whatever we want; a choice of T = 0 corresponds to

collapsing the probability distribution onto its modal prediction.

Let (x1, . . . , xk+1) be the random variable corresponding to a sequence of tokens that appears

in a randomly sampled piece of internet text. M is trained to maximize the expected value of

the logarithm of the probability it places on xk+1 when given input (x1, . . . , xk). Thus, M can

be thought of as a calibrated “next-token predictor.”

After M has been trained, we can use it to generate entire sequences of tokens autoregressively.

The idea is to recursively plug the sequence of predictions back into itself: given a prompt

(x1, . . . , xk), we sample

xk+1 ∼M(x1, . . . , xk)

xk+2 ∼M(x1, . . . , xk, xk+1)

xk+3 ∼M(x1, . . . , xk, xk+1, xk+2)

...

This gives us a random completion (xk+1, xk+2, . . . ). Eventually, a special “stop token” may

be produced to indicate the end of the completion. Amazingly, this process often produces

coherent, intelligent responses. For example, if (x1, . . . , xk) is a tokenization of “Q: Can you

tell me a bedtime story? A: ”, then the completion might start: “In a quiet village nestled

between rolling green hills, there lived...”. This is how all modern language models like Claude

and ChatGPT work.
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Table 2: Input distributions and examples.

Name Tokens Description Tokenized example

hex 33 Tokens that consist solely of hexadecimal char-
acters, weighted by their frequency in long,
uniformly-random hexadecimal strings.

<|BOS|>aa5acbf6aad468813f94c2fbbff4dc6

5eadc1553

camel 33 Tokens that start with a capital letter, then have
only lowercase letters, weighted by their frequency
in Python code.

<|BOS|>LayoutCredServicesVirtualUse

TimeInterfaceColorBodyAlRowHeight

RepFontAndMetaRequestGroupsOneLabel

PasswordAndRaVideoFailedValueGuiType

MicrosoftSlotDeId

colon 34 Tokens weighted by frequency in Python code.
Always ends with a colon.

<|BOS|> et-= """]: (\n : This

c\r\n (’/\nFilereturn
\n\n <|EOS|> ’].2default.**1

self( def’)",:

if 34 Tokens weighted by frequency in Python code.
Always starts with ‘ if’.

<|BOS|> if: else,-post\n
\n 2\n\n5 foundfromout, self

- node +=\n \n =\n( this ’

values(),.(do

caps 21 Tokens that consist only of capital letters or
punctuation, weighted by frequency in En-
glish text. Starts with ‘He screamed: "’ or
‘She screamed: "’.

<|BOS|>He screamed: "ESOTTULEBOV.,WR!!

IMITLEER.,ARY...IIESSION

english 26 Tokens that consist only of letters and start with
a space, as well as punctuation. Weighted by fre-
quency in English text.

<|BOS|>ating. is invent School not

found from cm an in one to shooting

everyone Cor George around responsive

employees ground on stone various,

spanish 25 Tokens that consist only of letters and spaces.
Weighted by frequency in Spanish text.

<|BOS|> lo no bu dees cr socialjosabil

er m de enidadareljd final de v de lo

much

icl 29 A simple in-context learning prompt of the form
‘A for R for C for ... Y for ? for’,
where the underscores are replaced with random
tokens that start with the corresponding letter
(weighted by frequency in English text), and the
? is replaced with a uniformly random letter. The
letters spell out ‘ARCTHEORY’.

<|BOS|>A for American R for Return C

for crack T for troubles H for house

E for equipment O for operating R for

reason Y for your V for

5.3 Importance sampling methods

Naive sampling fails to produce good estimates for low-probability events because it takes too many

samples from D to observe a positive example. To address this, we can instead draw samples from

a different distribution that up-weights regions of input space most likely to produce the behavior

of interest. If we re-weight our observations properly, this gives an unbiased estimator for the true

probability. This is known as importance sampling, and it enjoys the same advantages that adversarial

training has over standard training: by using a narrower input distribution, we can more efficiently

discover positive examples of the target behavior.

Formally, let p(x) be the probability mass function of D, and let q(x) be the PMF of any other

distribution. Then

Pr
x∼p

[M(x) = t] = E
x∼p

[1[M(x) = t]] = E
x∼q

[
p(x)

q(x)
1[M(x) = t]

]
,

but the latter may have less variance (and so require fewer samples to get a good estimate).

The following two importance sampling methods take q(x) to be a Boltzmann posterior with prior p(x).

The first defines q(x) with independent tokens, while the second defines q(x) to have non-independent

tokens and so requires a more sophisticated sampling method.
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5.3.1 Independent Token Gradient Importance Sampling (ITGIS)

We want q to up-weight tokens that contribute to t being outputted. One way to do this is to continue

to treat each input token as independent, but change the probability of tokens according to their

average linear contribution to the logit of t. Let x = (x1, . . . , xk) ∈ Vk be an input of length k, and

say that p(x) factors as p1(x1) · · · pk(xk). Then we define q(x) = q1(x1) · · · qk(xk), where

qi(xi) ∝ pi(xi) · exp

(
si(xi)

T

)
and

si(xi) = E
x′∼q

[∇x′Mt(x
′)]i,xi .

T is a temperature parameter (unrelated to the temperature we use to sample from the model, which

is always set to 0), and the gradient is taken by treating x′ as a one-hot vector in Rk×|V|. Intuitively,

the gradient ∇x′Mt(x
′)i,xi

gives us a linear approximation to how much the logit of t would change

if we replaced i-th token of x′ with xi (up to an additive constant w.r.t. xi). Thus, si scores each

token value according to its average linear contribution to Mt, and qi is defined as the Boltzmann

distribution with respect to this score function.30

However, since si and q are both defined in terms of each other, we can’t calculate si directly. To

overcome this, we construct a sequence of score functions s
(0)
i , s

(1)
i , . . . and associated distributions

q(0), q(1), . . . that are adaptively refined with respect to each other using an exponentially-weighted

moving average. Sampling from each q(j) lets us calculate an importance sampling estimate, and the

final output is the average value of these estimates across all j. See Algorithm 1 for pseudocode.

Algorithm 1 Independent Token Gradient Importance Sampling (ITGIS)

Require: Model M , target token t, input length k, token distributions p1, . . . , pk, temperature T ,
iterations n, batch size B

1: s
(0)
i ← 0 ∈ R|V| for all i ∈ [k] # Initialize score functions

2: estimates← []

3: for j ← 1 to n do
4: for i← 1 to k do
5: q

(j−1)
i (x)← pi(x) · exp(s

(j−1)
i (x)/T ) for all x ∈ V

6: Normalize q
(j−1)
i to have sum 1

7: end for
8: Sample B inputs {x(b)}Bb=1 from q

(j−1)
1 × · · · × q

(j−1)
k

9: for i← 1 to k do
10: ŝ

(j)
i (x)← 1

B

∑B
b=1[∇xMt(x

(b))]i,x for all x ∈ V
11: end for
12: α← 0.9
13: for i← 1 to k do

14: s
(j)
i ←

ŝ
(j)
i +αŝ

(j−1)
i +···+αj−1ŝ

(1)
i

1+α+α2+···+αj−1 # Exponentially-weighted moving average
15: end for

16: estimate← 1
B

∑B
b=1

∏k
i=1 pi(x

(b)
i )∏k

i=1 q
(j−1)
i (x

(b)
i )

1[M(x(b)) = t]

17: Append estimate to estimates

18: end for

19: return 1
n

∑n
j=1 estimates[j]

30It can be shown that, given a score function s(x) and a prior p(x), the distribution that maximizes Ex∼q [s(x)]− T ·
KL(q∥p) is q(x) ∝ p(x) · exp(s(x)/T ).
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5.3.2 Metropolis–Hastings Importance Sampling (MHIS)

A problem with ITGIS is that the new sampling distribution q(x) still treats all tokens as independent,

and it only accounts for linear effects of tokens on the target logit. Thus, ITGIS may fail to sample

into the most important regions of the input space if the model is sensitive to non-linear interactions

between tokens (e.g., if the model’s target logit is only high when the last two tokens of the input are

the same as each other).

To remedy this, we can define an importance sampling distribution that does not have independent

tokens. We must use a score function that depends on the entire input; the most natural choice is the

target logit Mt(x). We define

q(x) ∝ p(x) · exp

(
Mt(x)

T

)
,

again using a Boltzmann distribution to up-weight regions of input space that are more likely to have

positive samples.

Unlike ITGIS, we cannot explicitly compute q because it does not factor into independent distributions

over each token. Instead, we use the Metropolis–Hastings algorithm to produce a random walk in input

space that has a stationary distribution of q.31 To do so, we must define a proposal distribution ϕ(x′|x)

that suggests the next element of the walk. To encourage fast mixing, this proposal distribution should

be good at exploring into regions of input space that q weights highly.

Here we take inspiration from Greedy Coordinate Gradient, an algorithm that optimizes a discrete

prompt to jailbreak a model using gradients [ZWC+23]. We adapt this optimization procedure into

a proposal distribution: to pick a proposed next step x′ of the walk, we choose a random token

position i to replace, compute the gradient of s(x) with respect to xi, then sample a replacement token

for position i according to a Boltzmann distribution defined by this gradient (similarly to ITGIS).

Formally, we define the proposal distribution ϕ(·|x) to be the distribution induced by the following

procedure:

1. Choose a random token position i ∈ [k] to modify.

2. Calculate the gradient at that token [∇xMt(x)]i ∈ R|V| (treating x = (x1, . . . , xk) as a one-hot

vector in Rk×|V|). Call this gradient g.

3. Sample a replacement token x′
i from the distribution proportional to

pi(x
′
i) · exp

(gx′
i

T

)
.

4. Output x′ = (x1, . . . , x
′
i, . . . , xk).

Note that the transition probability in Metropolis–Hastings only depends on the ratio

q(x′)ϕ(x|x′)

q(x)ϕ(x′|x)
=

pi(x
′
i)

pi(xi)
· exp

(
Mt(x

′)−Mt(x)

T

)
· ϕ(x|x′)

ϕ(x′|x)
,

which is easy to compute given forward and backward passes at x and x′.

We use an initial burn-in period (see Appendix D) for the random walk before recording samples

x(1), . . . ,x(n). The final output of the method is the empirical importance sampling estimate

1

n

n∑
j=1

p(x(j))

q(x(j))
1[M(x(j)) = t].

This requires computing q(x), which involves the normalization constant. To save samples, we estimate

31Metropolis–Hastings is a Markov Chain Monte Carlo method for sampling from a distribution with an unknown
normalizing constant. See [Rob16] for a description of the algorithm.
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the normalization constant using the identity:

E
x∼p

[
exp

(
Mt(x)

T

)]
= E

x∼q

[
exp

(
−Mt(x)

T

)]−1

.

The right-hand side can be estimated using the n samples we already have from (approximately) q.

In practice, the way we estimate the normalizing constant does not matter much, as most of the error

comes from other steps. See Algorithm 2 for pseudocode.

Algorithm 2 Metropolis–Hastings Importance Sampling (MHIS)

Require: Model M , target token t, input length k, token distributions p1, . . . , pk, temperature T ,
number of burn-in steps nburn, number of samples n

1: Initialize x by sampling from p1 × · · · × pk
2: samples← []
3: for step← 1 to nburn + n do
4: i← Unif([k]) # Choose random position
5: g← [∇xMt(x)]i
6: Sample x′

i from ∝ pi(x
′
i) · exp(gx′

i
/T ) # Proposed token

7: x′ ← (x1, . . . , x
′
i, . . . ,xk) # Proposed new state

# Compute acceptance ratio r = q(x′)ϕ(x|x′)
q(x)ϕ(x′|x)

8: r ← AcceptanceRatio(M, t, T, (p1, . . . , pk),x,x′)
9: if Unif(0, 1) < r then

10: x← x′ # Accept proposal
11: end if

12: if step > nburn then
13: Append x to samples

14: end if
15: end for

16: Z ←
(

1
n

∑n
j=1 exp(−Mt(samples[j])/T )

)−1

# Estimate normalizing constant

17: return 1
n

∑n
j=1

exp(Mt(samples[j])/T )
Z 1[M(samples[j]) = t]

5.4 Activation extrapolation methods

The importance sampling methods search for explicit examples of inputs that cause the given behavior.

This makes their task at least as hard as the adversarial training search problem—if it is difficult to

find an x ∈ supp(D) such that M(x) = t, the importance sampling estimators will likely fail to produce

a positive estimate.

We hope to find low probability estimation methods that work even when the search problem for

importance sampling is hard. To do this, we introduce activation extrapolation: first fit a distribution

to the activations or logits of M , then estimate the probability of the output property of interest under

this idealized distribution. Our first such method is Quadratic Logit Decomposition, which applies a

presumption of independence between uncorrelated subspaces of the model’s pre-unembed activations.

We also develop Gaussian Logit Difference, which is intended as a simple baseline method.
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Remark 5.3. Activation extrapolation as a DPE

Activation extrapolation can be viewed as a hybrid between a method that uses end-to-end

sampling and a Deduction-Projection Estimator. The tractable families of distributions D (as

defined in Section 2) are “sums of two independent, discrete random variables (supported on 1

and d− 1-dimensional subspaces, respectively)” for QLD, and univariate Gaussians for GLD.

A true DPE only performs deductive calculations to propagate distributions throughout the

network, while the activation extrapolation methods presented here fit the activation distribu-

tions using samples. However, once this distribution is obtained, the final probability estimate

can be calculated deductively.

Since the activations we model—the logits themselves—occur at the very end of the transformer,

we give up any potential advantages from a layer-by-layer analysis. During the exploratory

phase of this work, we tried more mechanistic estimators based on covariance propagation

(Section 2.1). Unfortunately, these did not perform well in practice because the ground-truth

distributions of activations are highly non-Gaussian in our setting, especially on input dis-

tributions supported over a small number of points. We hope to improve the distributional

assumptions made by these types of layer-by-layer approaches in future work.

5.4.1 Quadratic Logit Decomposition (QLD)

Let the random vector v(x) ∈ Rd be the final-token activation of the model right before applying

the unembed matrix WU ∈ Rd×|V|. That is, v(x) ·WU represents the model’s output logit vector

M1,...,|V|(x). We first collect n samples of v (call them v(1), . . . ,v(n)), and compute their empirical

mean µ ∈ Rd and covariance Σ ∈ Rd×d. Define u to be the whitened version of v:

u := A−1(v − µ)

v = Au + µ,

where A ∈ Rd×d is any matrix such that AA⊤ = Σ. Note that u has mean 0 and covariance Idd.

From now on, we principally work in this whitened representation of activation space, as it has the

convenient property that the u · e and u · e′ are uncorrelated if and only if e and e′ are orthogonal.

Next, we choose a unit vector d ∈ Rn (see “Choice of direction” below). We can define a decomposition

of our whitened samples u(1), . . . ,u(n) into components parallel and perpendicular to d:

a(i) := dd⊤u(i)

b(i) := u(i) − a(i).

Finally, by treating the random vectors a and b as independent, we can use our n samples of each

to obtain n2 “synthetic” samples of u. The final output of QLD is the proportion of these synthetic

samples that cause t to be outputted:

1

n2

∣∣∣{(i, j) ∈ [n]2
∣∣a(i) + b(j) ∈ S

}∣∣∣ ,
where

S :=
{
u ∈ Rd

∣∣ arg maxi((Au + µ) ·WU )i = t
}
.

Here, S ⊆ Rd is the “acceptance region” of activation space corresponding to activations that result

in the target logit being highest after unembedding.

This proportion can be computed in Õ(n) time—we don’t need to explicitly iterate over all n2 pairs.

By the convexity of the acceptance region S, for any fixed b there is a single interval [ℓ, r] such that

a ∈ [ℓ, r] ⇔ ad + b ∈ S. We can efficiently compute the bounds of this interval for every sample
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b(j) by solving a linear system of inequalities, and then we can calculate how many a(i) fall into each

range in O(log n) time after sorting. Thus, the computational cost of QLD is dominated by running n

forwards passes of M to generate the samples u(1), . . . ,u(n). See Algorithm 3 for pseudocode.

Choice of direction. We rely on the following two assumptions for QLD to perform well: 1) a and

b are approximately independent (so that our estimate is unbiased), and 2) the contribution towards

the output behavior is split roughly equally between these two terms (to minimize the variance of our

estimate). See Appendix A for more discussion of this motivation. After some initial experimentation

with a variety of candidate directions,32 we decided to set d to be the direction of the shortest vector

in whitened space that results in the model outputting t. It can also be thought of as the maximum

likelihood value of v under a Gaussian prior, conditioned on observing the model output token t.

Appendix B describes the algorithm we use to compute d.

Remark 5.4

QLD decomposes the whitened space Rd into two subspaces of dimension 1 and d − 1. We

could have instead chosen any arbitrary decomposition Rd = W1 ⊕ · · · ⊕Wk, where each Wi

is a di-dimensional subspace. Given n samples, this algorithm produces nk synthetic samples

by mixing and matching all combinations of sampled subspace values. Although any such

decomposition would constitute a valid estimator, we chose the decomposition d = 1 + (d− 1)

because it allows us to apply the aforementioned “sorting trick” to compute the proportion of

accepted synthetic samples in Õ(n) time instead of O(n2) time. Future work could explore the

performance of other decompositions at the cost of a worse asymptotic time complexity in n.

We also tried modeling the random component from one of the subspaces as Gaussian with its

sample mean and sample covariance. This makes it possible to obtain a non-zero probability

estimate even when all n2 synthetic samples are far from S. However, in our experiments this

approach performed worse than standard QLD.

5.4.2 Gaussian Logit Difference (GLD)

On any given input, we can record the difference ∆t := Mt(x) − maxi Mi(x). We wish to estimate

the probability that ∆t ≥ 0. A natural estimation method, which we view as a simple baseline, is to

treat ∆t as Gaussian by estimating its mean µ and standard deviation σ with samples, then calculate

Pr[N (µ, σ2) ≥ 0]. In practice, we use a slightly different functional form that captures the Gaussian

PDF, which approximates the CDF well in the tails. The output of the Gaussian Logit Difference

method is:

exp

(
−
(

aµ

σ + ϵ

)2

+ b

)
+ c,

where a, b, c, and ϵ are parameters that are fit to minimize loss across all target tokens associated with

a given distribution.

5.5 Experimental setup

We apply our methods to three models: a 1-layer, a 2-layer, and a 4-layer transformer from [NB22].

All models have a hidden dimension of d = 512, a vocabulary size of |V| = 48262, GELU non-linearities

[HG23], and were trained on the C4 dataset [RSR+23] and CodeParrot [TvWW22].

For each of the 8 distributions (listed in Table 2) and for each model, we generate ground-truth token

probabilities by running forward passes on 232 random samples. We then select a random set of 256

32Other candidate directions included 1) the t-th column of WU pulled back into whitened space and 2) the expectation
of N (0, Idd) conditioned on lying in S.
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Algorithm 3 Quadratic Logit Decomposition (QLD)

Require: Model M with unembed matrix WU , target token t, sample size n
1: Sample n inputs x(1), . . . ,x(n) from input distribution
2: Compute pre-unembed activations v(i) ∈ Rd by running M on x(i) for i ∈ [n]
3: µ← 1

n

∑n
i=1 v

(i)

4: Σ← 1
n

∑n
i=1(v(i) − µ)(v(i) − µ)⊤

5: Find A such that AA⊤ = Σ + ϵ · Idd # via Cholesky decomposition
6: for i← 1 to n do
7: u(i) ← A−1(v(i) − µ) # Whitened activations
8: end for

9: d← ShortestAcceptingVector(A,µ,WU , t) # See Appendix B
10: for i← 1 to n do
11: a(i) ← dd⊤u(i) # Parallel component
12: b(i) ← u(i) − a(i) # Perpendicular component
13: end for

14: Sort {a(i)}ni=1 in ascending order
15: count← 0
16: for j ← 1 to n do

# Solve linear inequalities to get [ℓj , rj ] such that a ∈ [ℓj , rj ]⇔ ad + b(j) ∈ S
17: [ℓj , rj ]← FindAcceptanceInterval(b(j),d,A,µ,WU , t)
18: count← count + |{i : a(i) ∈ [ℓj , rj ]}| # Binary search for bounds
19: end for

20: return count/n2

tokens among those with ground-truth probabilities between 10−9 and 10−5, and we test all of our

methods on these tokens.

We give each method a computational budget of 216 model calls (see details in Appendix D). This

budget was chosen so that naive sampling would almost never result in any positive estimates for the

range of token probabilities we test (216 < 105), but the theoretical quadratic gains from QLD would

still be enough to get signal on the entire range of probabilities ((216)2 > 109).

Our code is available at https://github.com/alignment-research-center/ low-probability-estimation.

Itakura–Saito loss. We measure the quality of each method with a loss function inspired by the

Itakura–Saito divergence [IS68]. If p is the ground-truth probability of a particular target token, then

an estimate of q incurs a loss of:

DIS(p, q) =
p

q
− ln

p

q
− 1.

Two considerations went into the choice of this loss function. First, Itakura–Saito loss is a proper

scoring rule [BBK+19]. Second, since it only depends on the ratio p/q, Itakura–Saito loss is sensitive

to small probabilities: if p = 10−100 and q = 10−10, then DIS(p, q) is very large. In contrast, the

squared error loss function (p− q)2 would be extremely small. Intuitively, this sensitivity is desirable

because we care how our methods perform on a wide (as measured in log-space) range of ground-truth

probabilities. We don’t want the performance metric to be dominated by a method’s behavior on only

the most probable tokens.

For completeness, we also report our results using squared error in log-space (Appendix F), even though

this is not a proper scoring rule. The results are qualitatively identical.

Affine fits. Many methods often report estimates of 0, but DIS is undefined for q = 0. To address

this, we fit a transformation x 7→ axc + b to the outputs of each method, where a, b and c are chosen

39

https://github.com/alignment-research-center/low-probability-estimation


to minimize Itakura–Saito loss. axc can be thought of as an affine transformation in log-space, and

adding b prevents values from being too small while barely affecting larger outputs. To ensure that this

transformation is not overfitting to the particular set of 256 tokens, we report the leave-one-out cross-

validation (LOOCV) loss of each method. We train a separate fit for each (method, input distribution)

pair.33

5.6 Results

Figure 8 shows the performance of each method. The relative ordering is clear: both importance

sampling methods outperform Quadratic Logit Decomposition, which in turn outperforms Gaussian

Logit Difference. GLD is barely better than outputting an optimal constant (which can be interpreted

as the performance of naive sampling). Figure 10 shows that there is a fair amount of variation in

method performance across the 8 distributions: some behaviors like hex and icl favor MHIS, while

others like spanish heavily favor ITGIS. A more detailed table of results is in Appendix E.

Among the two importance sampling methods, ITGIS does better on smaller models, while MHIS does

better on larger models. We believe this is because larger models are less easily approximated as linear

functions and are more likely to have complex behaviors arising from inter-token interactions.

Figure 9 displays example scatter plots of ITGIS, MHIS, and QLD estimates before a fit is applied.

Each point represents the ground-truth and estimated probability of a different target token. More

scatter plots can be found in Appendix H; note that the qualitative performances of the methods can

vary significantly on different input distributions. We perform an ablation study on our choice of loss

function in Appendix F, in which we score methods based on squared error in log-space instead of

Itakura–Saito loss.

5.7 Discussion

5.7.1 Distribution shift as motivation

One might ask: if a particular model behavior is so rare that it never arises during training, why would

we care about estimating its probability? There are a few reasons. First, some AI systems may be run

on many more inputs during the course of deployment than during training. Thus, if a certain model

behavior would be so catastrophic that it is unacceptable for it to occur even once in deployment, we

cannot rely on training to drive down its probability low enough. Second, there may be distributional

shift between training and deployment such that events that occur extremely rarely during training

become more likely in deployment. This could occur because of an input chosen adversarially, but it

could also occur because of goal misgeneralization [SVK+22].

A particularly challenging case is deceptive alignment (discussed in Section 3), the possibility that a

machine learning model would look for clues about whether it is in a training or a deployment envi-

ronment, and only behave well in training [HvMM+21]. To determine whether a model is deceptively

aligned, one could craft an input distribution that is “wide enough” to assign some probability mass,

even if very small, to any possible deployment-time input, then apply low probability estimation meth-

ods to detect if the model would ever perform a catastrophic behavior on this distribution.34 For more

discussion of this idea, see [Xu24].

33Note that the Gaussian Logit Difference method has a special functional form of its fit ((µ, σ) 7→
exp

(
− (aµ/(σ + ϵ))2 + b

)
+ c instead of x 7→ axc + b) but is otherwise evaluated in the same way.

34To prevent false positives, this would require a very demanding definition of catastrophe that would be impossible
for the model to trigger “by accident.”
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Figure 8: The Itakura–Saito loss of all methods across different model sizes. The solid lines indicate the loss
of each method averaged over all 8 distributions, with bands showing standard error. The colored points
indicate the loss on individual distributions, with horizontal jitter added for visibility. Lower is better.

Figure 9: Examples of method outputs on two different distributions and models, before a fit is applied.
Estimates of 0 are placed at the bottom of each graph for visibility.
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Figure 10: The Itakura–Saito loss of all methods across different distributions, averaged over all 3 model
sizes. Lower is better.

5.7.2 Relation to red-teaming and adversarial training

Our importance sampling methods for low probability estimation involve finding inputs for which the

rare event occurs. This amounts to the well-studied task of “red-teaming”. As long as the required

importance sampling ratios can be computed, any method for red-teaming can be turned into an

importance sampling method for low probability estimation, as we demonstrate with our adaptation

of Greedy Coordinate Gradient into MHIS [ZWC+23]. However, our activation extrapolation methods

such as QLD do not correspond to any red-teaming method.

A further reason to be interested in low probability estimation is that it could be used to reduce the

probability of the rare event, by optimizing the model to produce a lower estimate. For example,

this could be done using gradient descent, if the estimate were a differentiable function of the model’s

parameters. For an importance sampling method, this amounts to finding inputs for which the rare

event occurs (i.e., red-teaming) and using them as training data, which is essentially the well-known

method of adversarial training [GSS14]. However, since our activation extrapolation methods do not

correspond to any red-teaming method, new activation extrapolation methods potentially provide us

with new ways to reduce the probabilities of rare events.

5.7.3 Importance sampling versus activation extrapolation

In our experiments, we found that importance sampling methods outperformed activation extrapo-

lation. Nevertheless, there are theoretical cases in which importance sampling performs worse than

other methods. For example, consider a model that outputs the SHA-256 hash of its input: finding any

input that gives rise to a particular output is computationally infeasible, yet it is still easy to estimate

the probability of a particular output by modeling the output of the hash function as random.

More generally, we are excited about low probability estimation as a concrete problem for which for

which it may be necessary to leverage internal model activations. In place of importance sampling,

we may be able to use deductive estimates based on a presumption of independence [CNX22]. Our

Quadratic Logit Decomposition method is an early proof of concept of this, even though it is outper-

formed by importance sampling in our setting.
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5.7.4 Limitations

There are two main limitations of our experimental setup. First, we only use input distributions

that factor into independent tokens. This choice is necessary for the definition of ITGIS. It is also

very convenient for the implementation of MHIS, because it gives efficient sampling access to the

proposal distribution. To move beyond independent token input distributions, we could define the

input distribution to be the output of a separate generative model and adapt our current estimation

methods appropriately.

Second, we only study model behaviors that consist of a single token sampled at temperature 0. This

is unrealistic because in practice, if we were concerned about specific single-token outputs, it would

be easy to filter them out. In contrast, the types of behaviors we actually worry about likely involve

long chains of autoregressive generation or interaction with the external world (e.g., when forming and

executing a plan). We are excited to see future work extending our setting in this direction.

Nevertheless, it is worth noting that formally defined distributions and behaviors are more general

than they may initially seem. For example, we could formalize the event “M writes buggy code”, as:

When M ’s output is given to GPT-4 along with the prompt “Does this code contain any bugs? Let’s

think step by step.”, does GPT-4 end its response with YES?

5.7.5 Related work

The problem of low probability estimation was previously considered in the context of computer vision

by [WRTK19], where they propose using an Adaptive Multi-Level Splitting algorithm with Metropolis

Hastings. However, they only study the problem in the context of computer vision with continuous

input spaces, and their approaches still require finding positive samples, unlike our activation extrap-

olation methods. [PAC+24] and [HPP+24] attempt to estimate the probability that a language model

passes certain capability evaluations, even when its success rate is low, though their methods are not

directly applicable to our formal setting.

Our importance sampling methods can be viewed as solving a special case of controlled text generation

[ZSL+23] in which we want to sample from an autoregressive distribution conditioned on a property of

the full output (in our case, that the last token is t). [YK21] do this by training Future Discriminators

to steer model generation towards the desired attribute. [LZXGM23] approach the problem with a

Sequential Monte Carlo steering approach; however, their infilling algorithm does not provide any

benefit over naive sampling when all tokens except the last are independent. These works don’t

consider the problem of low probability estimation.

[ZBMG24] focus on the problem of estimating the partition function of an unnormalized target distri-

bution over sequences, which is a more general case of our low probability estimation problem. Their

Twisted Sequential Monte Carlo methods can be viewed as more advanced versions of our importance

sampling methods. In contrast, in this work we focus on motivating the low probability estimation

problem and introducing methods that do not involve searching for positive samples, such as activation

extrapolation.

Finally, there is a large body of work applying adversarial training to improve worst-case model per-

formance [BLZ+21, GSS14, IST+19], especially in the context of language models [Mad17, LCH+20].

[PHS+22] explores using language models themselves to aid in red-teaming other models. Latent ad-

versarial training [CSPHM24, SEG+24] generalizes standard adversarial training by optimizing over

perturbations in activation space; this means that, like activation extrapolation methods, it can be

effective even when the adversarial training search problem over input space is hard.

5.7.6 Conclusion

In this work, we introduced the problem of low probability estimation along with four novel estimation

methods. We defined and collected ground-truth probabilities for 8 different input distributions, then

43



used them to evaluate the performance of our proposed methods. We found that the two importance

sampling-based methods perform the best, with larger models favoring MHIS over ITGIS.

We are excited for future work that extends our empirical setup to non-independent input distribu-

tions and output behaviors that involve more than one token. We are also looking forward to future

research that develops more accurate estimation methods, especially methods that move beyond impor-

tance sampling by incorporating deductive elements—for example, layer-by-layer activation modeling

methods inspired by Deduction-Projection Estimators.
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6
Optimizing Piecewise-Constant Objectives

Section 5 demonstrates that a method inspired by Deduction-Projection Estimators can beat baselines

at low probability estimation. However, the baselines in question are quite weak, so this accomplish-

ment should not be seen as a particularly impressive empirical result.

In the final section of this thesis, I present a setting in which a DPE-based method outperforms a

much stronger and widely used baseline. In particular, I show that on the task of outputting the

second-argmax of a sequence of inputs, models optimized with a DPE-based method are often more

accurate than models optimized with cross-entropy loss. I view this as the first compelling example of

deductive estimators prevailing over traditional machine learning techniques, although we only study

very small models and a simple algorithmic task.

6.1 Introduction

In supervised machine learning, we often want to train classifiers to maximize accuracy over a given

data distribution. That is, given a distribution D over labeled data pairs (x, y) ∈ X × Y, where the

number of labels |Y| is finite, we want our model Mθ to maximize the probability of outputting a

correct label:

Acc(θ) := Pr
x,y

[Mθ(x) = y].

The most natural estimator for the accuracy of the network is its accuracy on a randomly sampled

data point. We can express this with the 0–1 loss function that takes in the parameters of the model

and evaluates its accuracy on a given (x, y) pair:

LAcc(θ;x, y) := 1[Mθ(x) ̸= y].

Clearly, Ex,y[LAcc(θ;x, y)] = 1−Acc(θ). But there’s a problem here: LAcc has a discrete range {0, 1},
so for any fixed (x, y), it is piecewise constant as a function of θ. This means that if D is continuous,

with probability 1 over the choice of (x, y), the gradient of LAcc is zero:35

∇θLAcc(θ;x, y) = 0. (3)

Note that ∇θAcc(θ) is usually not zero because D can be continuous. However, Equation 3 shows we

cannot estimate the gradient of Acc by taking the gradient of its unbiased estimator. In other words,

the expectation and the gradient “don’t commute” because LAcc is discontinuous in θ.

−∇θAcc(θ) = ∇θ E
x,y

[LAcc(θ;x, y)] ̸= E
x,y

[∇θLAcc(θ;x, y)] = 0

Thus, it is impossible to use stochastic gradient ascent against LAcc to optimize θ for having high

accuracy.

35Another way to see this is that the decision boundaries induced by the classifier are continuous in θ, so any small-
enough perturbation in θ will preserve the current labeling of x as long as it does not happen to lie on one of the
boundaries.
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The standard solution here is to train against a continuous “surrogate” loss function in place of the

accuracy, usually cross-entropy loss (also known as “log loss”) [MMZ23]. That is, we ask Mθ for

a probability distribution over Y, usually by having it output a vector of logits in R|Y| and then

normalizing with a softmax. For any (x, y), let py(x) be the probability assigned to y when the model

is run on input x (the dependence on θ is implicit). The cross-entropy loss is then

CE(θ) := E
(x,y)

[− log py(x)].

To optimize this, we apply stochastic gradient descent on the unbiased estimator LCE(θ;x, y) :=

− log py(x). Since py(x) has a continuous range [0, 1], the expectation of ∇θLCE is indeed ∇θCE(θ).

The final prediction of the model is the label that obtains the highest logit:

Mθ(x) := arg maxy py(x).

Empirically, training with cross-entropy loss typically produces classifiers with high accuracy. Cross-

entropy is a proper scoring rule, so this has the additional benefit of encouraging predictions to be

calibrated: we can tell how confident the model is based on p(x). However, if all we ultimately care

about is producing a classifier with the maximum possible accuracy, cross-entropy is an unsatisfying

solution. Optimizing a model to achieve low cross-entropy loss is a different objective than optimizing

it for high accuracy, and the two objectives trade off against each other given a model class of bounded

capacity:

arg minθ CE(θ) ̸= arg maxθ Acc(θ).

In this section, I present the Gaussian Mixture Half-space Pruning (GMHP): a Deduction-Projection

Estimator that can be used as an alternative objective function for optimizing Acc(θ). Unlike the

sampling-based estimator LAcc, GMHP is not a piecewise-constant function of θ, so we can optimize

for it directly with gradient ascent. We will show that GMHP often produces classifiers that

outperform classifiers trained only with cross-entropy loss, although there are still some

sampling-based estimators that perform better.

6.2 Problem statement

We define our supervised learning setting: small recurrent neural networks (RNNs) trained to output

the second-argmax of a list of numbers.

The second-argmax function SAM : Rn → [n] takes in n inputs x1, x2, . . . , xn ∈ R, and outputs the

index of the second-largest argument. For example:

SAM(−0.7, 0.0, −1.6) = 1

SAM(0.2, 1.5, −0.5, 0.8) = 4

SAM(3.2, 1.1, 0.2, −1.9, 1.0) = 2

We study the problem of training RNNs to compute SAM with the highest possible accuracy on

inputs drawn from the standard normal distribution N (0, Idn). While this is a very easy task for a

large enough neural network, we study the regime in which the models do not have enough parameters

to achieve 100% accuracy.
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x1 x2 x3 x4

ℓ(x)

Figure 11: An RNN with n = 4 and d = 3. The value of each neuron is a scalar given by the weighted sum of
all incoming neurons. ReLUs are applied at each shaded neuron. Green arrows indicate whi, blue arrows

indicate W hh, and red arrows indicate W oh.

Remark 6.1. Why second-argmax?

We work with the second-argmax function because it is one of the simplest algorithmic tasks

that is not trivial for an RNN. In contrast, the (first-)argmax task is easy for a neural network:

simply let the i-th output logit be xi.

The DPE for second-argmax leverages certain bespoke structural properties of SAM, for ex-

ample that it can be represented as a piecewise constant function on a polynomial number

of polyhedral cones. We eventually hope to find DPEs for other types of algorithmic tasks

where this assumption is false. Note that during the research process, SAM was chosen as an

algorithmic task to target before we had an idea of what the DPE would look like.

Our RNN architecture has parameters θ = (whi,W hh,W oh), where whi ∈ Rd is the input vector,

W hh ∈ Rd×d is the transition matrix, and W oh ∈ Rn×d is the output matrix. The computation

performed by the model is defined as follows:

h(0) = 0 ∈ Rd

h(t) = ReLU(W hhh(t−1) + whixt) ∈ Rd ∀t ∈ [n]

ℓ = W ohh(n) ∈ Rn

pi =
exp(ℓi)∑n
j=1 exp(ℓj)

∈ (0, 1) ∀i ∈ [n]

The vector ℓ represents the output logits of the model. We will often use the notation ℓ(x) or p(x)

to refer to the logits or output probabilities as a function of the inputs (the dependence on θ is

implicit). The prediction of the model Mθ(x) corresponds to the highest logit ℓi(x) (equivalently,

output probability pi(x)). We wish to find training methods that maximize36

Acc(θ) := Pr
x∼N (0,Idn)

[arg maxi ℓi(x) = SAM(x)] .

Finally, note that our architecture has no biases, so in particular any positive scaling of x results in

the same prediction.

arg maxi ℓi(x) = arg maxi ℓi(ax) ∀a > 0

36If there is an exact tie for the highest logit then we assign partial credit; i.e., we calculate the accuracy the model
would have if there were an infinitesimal amount of isotropic noise added to the logits. This can happen with positive
probability if all d neurons in the last layer are 0 due to the final ReLU.
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6.3 Exact algorithm with Girard’s formula

We wish to find a deductive estimator for Acc(θ). In this subsection, we present an algorithm that

can compute the exact value of Acc(θ) when n = 3, although it runs in time exponential in d.

Consider the function ℓ : Rn → Rn that maps an input x to a logit vector.

Lemma 6.1

ℓ is piecewise linear as a function of x, where the number of pieces is at most 2nd.

Proof. There are nd neurons h
(1)
1,...,d, . . . , h

(n)
1,...,d that have ReLUs applied in the computational graph

of the RNN (see Figure 11). Label these neurons with [n] × [d], and let the value of neuron (i, j) on

input x be h
(i)
j (x).

Consider any subset S ⊆ [n] × [d] of these neurons. Let RS ⊆ Rn be the region of input space that

corresponds to S having active ReLUs:

RS =
{
x ∈ Rn

∣∣∣ [h(i)
j (x) > 0⇔ (i, j) ∈ S

]
∀(i, j) ∈ [n]× [d]

}
.

This results in a decomposition of input space:⊔
S⊆[n]×[d]

RS = Rn.

On any given RS , ℓ acts linearly because we can replace each of the ReLUs in the computational graph

with either the identity function or the zero function (both of which are linear), and the composition

of linear functions is linear. Thus, there exist matrices AS ∈ Rn×n for all S ⊆ [n]× [d] such that

ℓ(x) =


A∅x x ∈ R∅

A{(1,1)}x x ∈ R{(1,1)}
...

A[n]×[d]x x ∈ R[n]×[d]

.

■

In fact, we can show the following.

Lemma 6.2

For any S ⊆ [n]× [d], the region RS corresponds to an intersection of nd half-spaces in Rn. The

normal vectors of these half-spaces and the linear map AS can both be found in polynomial

time given the weights of the RNN.

Proof. This can be shown inductively by traversing the RNN layer by layer. For any t ≤ n, let

R
(t)
S ⊇ RS be the set of all inputs that “obey” S in the first t layers:

R
(t)
S =

{
x ∈ Rn

∣∣∣ [h(i)
j (x) > 0⇔ (i, j) ∈ S

]
∀(i, j) ∈ [t]× [d]

}
,

where the only difference from the definition of RS is in purple. Then we can prove that for all t,

• R
(t)
S is an intersection of td half-spaces which can be computed in polynomial time, and

• the function h(t) : Rn → Rd restricted to R
(t)
S is linear and can be found in polynomial time.

This is clearly true for t = 0. For the inductive step, say that h(t)(x) = Ax on R
(t)
S for some A ∈ Rd×n.
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R
(t+1)
S is the subset of R

(t)
S that obeys S at every neuron layer t + 1. For every such neuron (t + 1, j),

we know that its pre-ReLU activation must be W hh
j,: Ax+whi

j xt+1 for all x ∈ R
(t)
S . This can be written

as aj · x for

aj = W hh
j,: A + whi

j et+1,

where et+1 denotes the unit vector with a 1 in the t + 1-th coordinate. Thus, a1, . . . ,ad ∈ Rn are the

normal vectors of half-spaces such that

R
(t+1)
S = R

(t)
S ∩ {x |x · aj > 0 ∀j ∈ [d]}.

The function h(t+1) restricted to R
(t+1)
S is a linear transformation given by the matrix with aj as its

j-th row. This completes the inductive step.

Thus, the nd half-space constraints that define R
(n)
S = RS and the matrix AS corresponding to

ℓ(x) = W ohh(n)(x) on RS can both be computed in polynomial time (O(n2d2) time, to be specific).

■

Before we describe the algorithm for calculating the exact value of Acc(θ), we must discuss one more

preliminary: the intersection of half-spaces problem.

Definition 6.1. Spherical volume of an intersection of half-spaces

Given a list of n-dimensional half-spaces with normal vectors v1, . . . ,vk ∈ Rn, the spherical

volume of their intersection is:

SVol(v1, . . . ,vk) := Pr
x∼N (0,Idn)

[x · vi > 0 ∀i ∈ [k]].

Note that N (0, Idn) can be replaced with any spherically symmetric distribution over Rn with-

out changing the definition. The intersection of half-spaces that all pass through the origin is

sometimes referred to as a polyhedral cone.

This quantity is hard to compute in general. For a review of best-known approximation methods, see

[Fit24]. However, in a small number of dimensions, there is a straightforward algorithm for computing

it exactly.

Theorem 6.1

In n = 3 dimensions, the spherical volume of an intersection of k half-spaces SVol(v1, . . . ,vk)

can be computed in Õ(k) time.

Proof. Consider the 2-manifold obtained by intersecting all of the half-spaces with the unit sphere. The

surface area of this 2-manifold, sometimes called a spherical polygon, is equivalent to SVol(v1, . . . ,vk)

after normalizing by the surface area of the entire sphere, 4π. A classic fact of spherical trigonometry

is that the surface area of an N -sided spherical polygon is given by(
N∑
i=1

ai

)
− (N − 2)π,

where a1, . . . , aN are the interior angles of the polygon, measured in radians.37 This result is known as

Girard’s Theorem, and it has an elegant geometric proof that we will not reproduce here (for example,

see [Van13]). Thus, the only remaining challenge is to compute the vertices of the spherical polygon

in question, since the interior angles between them can easily be derived from their coordinates.

There are many ways to compute these vertices. One approach is to iterate over the intersections of all

37As a sanity check, if the polygon is small enough that it is almost planar (e.g., the floor plan of a house on the
surface of the Earth), then the sum of the interior angles is indeed very close to (N − 2)π.
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(
k
2

)
pairs of half-spaces, each of which corresponds to a pair of antipodal points on the sphere. Each of

these points can be tested for membership on the boundary of the spherical polygon by checking if it

satisfies the other k − 2 constraints. The points that pass this test exactly correspond to the vertices.

Finally, we order them with an angular sweep. This takes O(k3) time in total.

A more efficient algorithm involves adding in intersections with the half-spaces one at a time and

maintaining a sorted list of vertices of the current spherical polygon along the way. At any moment

during this process there are at most O(k) vertices, and updating the list of vertices can be done

in amortized O(log k) time by storing the vertices in an efficient data structure like a self-balancing

binary tree.38 Thus, we can compute SVol(v1, . . . ,vk) for n = 3 in Õ(k).

■

Piecing these results together, we get an algorithm for computing Acc(θ) in 2ndpoly(n, d) time when

n = 3. The key is to express the event “Mθ(x) = SAM(x)” as a union of 2ndn(n− 1) disjoint events

in the following way:

Acc(θ) = Pr
x

[Mθ(x) = SAM(x)]

=
∑
S

∑
i1 ̸=i2∈[n]

Pr
x

 x ∈ RS ∧
xi1 > xi2 > xj ∀j ̸= i1, i2 ∧
(ASx)i2 > (ASx)j ∀j ̸= i2

 . (4)

In other words, we condition on the subset of nonzero intermediate neurons (2nd choices), as well as

which coordinates of x are the argmax and second-argmax (n(n− 1) choices). The probability of each

of these events reduces to a SVol calculation. Indeed, each of the three types of constraints can be

written as an intersection of half-spaces that pass through the origin: x ∈ RS requires nd half-spaces

(Lemma 6.2), each xi > xj requires one half-space, and each (ASx)i2 > (ASx)j requires another

half-space.

Since this algorithm relies on Girard’s formula, it only works when n = 3. Although there has been

some work in extending Girard’s formula to higher dimensions, we lack a general formula that works for

all n [GB09]. In fact, we do not even know how to efficiently compute the area of spherical simplices for

general k = n (also known as the “centered orthant probability” of a multivariate Gaussian), although

there are techniques that allow us to reduce the dimensionality of the integral by a factor of 2 [SB53].

The intractability of this problem in high dimensions motivates the need for a deductive estimation

algorithm, which we explore in the next section.

6.4 Gaussian Mixture Half-space Pruning (GMHP)

The exact algorithm based on Girard’s formula presented in the previous subsection is unsatisfactory

for larger values of n for two reasons. First, as mentioned, we do not have an exact formula for the

half-space intersection problem in higher dimensions. Second, the complexity of the calculation is

exponential in nd, as we are forced to iterate over all subsets of nonzero neurons.

Here we present a deductive estimator for Acc(θ) called Gaussian Mixture Half-space Pruning (GMHP)

that can be applied to larger values of n. GMHP addresses each of the previous two failures individually.

To deal with the half-space intersection problem, we introduce an approach to deductively estimating

SVol(v1, . . .vk) using a modified form of covariance propagation. To deal with the exponential blowup

in the number of subsets of active neurons, we prune the smallest regions along the way.

38Concretely, we must remove all vertices that do not lie in the new half-space (which corresponds to a contiguous
subarray of vertices) and insert up to two new vertices corresponding to the intersections between the polygon and the
separating plane.
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Figure 12: An example of covariance propagation for the half-space intersection problem when n = k = 2.

6.4.1 Covariance propagation for half-space intersection

We introduced covariance propagation [CNX22] in Section 2.1 as a method for estimating the expected

value of a neural network. It entails deductively pushing a distribution of activations forward through

each layer, then projecting back down to a Gaussian with moment matching after each step. We can

adapt this method to the intersection of half-spaces problem, where instead of applying a non-linear

neural network layer, we condition our current distribution to lie in a half-space. This is mechani-

cally identical to Assumed Density Filtering [Ran04], where our Bayesian updates correspond to the

observations that each successive constraint is satisfied.

Given a Gaussian with mean µ ∈ Rn and covariance Σ ∈ Rn×n, as well as a normal vector v ∈ Rn,

we can deductively calculate each of the following in O(n2) time:

Pr
x∼N (µ,Σ)

[x · v > 0] E
x∼N (µ,Σ)

[x |x · v > 0] Cov
x∼N (µ,Σ)

[x |x · v > 0]

The details are very similar to propagating a Gaussian through a single ReLU as discussed in Sec-

tion 2.1, and it only requires access to the PDF and CDF of a one-dimensional standard Gaussian.

See our code for implementation details.

The covariance propagation algorithm for estimating SVol(v1, . . . ,vk) simply consists of maintaining

a running mean, covariance, and cumulative probability after conditioning on each prefix of half-space

constraints. The output of the algorithm is this final cumulative probability, which corresponds to the

product of all k single-step conditional probabilities. The algorithm takes O(n2k) time.

Note that covariance propagation can sometimes result in poor estimates, even though in practice it

is often reasonably accurate. For example, because any non-degenerate Gaussian is supported over

all Rn, this method always outputs a positive estimate, even when the answer is 0. Its output is also

sensitive to the order in which we apply the half-space constraints.

6.4.2 Pruning regions

To reduce the computational cost of summing the spherical volumes of an exponentially large number

of polyhedral cones, we introduce pruning. We need a slight shift in perspective to understand where

this pruning occurs. In the algorithm presented in Section 6.3, we iterate through all 2ndn(n − 1)

choices of (S, i1, i2) corresponding to regions on which Mθ is correct (Equation 4). For each such

region in sequence, we gather its half-space constraints and calculate SVol.

By contrast, for GMHP we calculate SVol for all of the regions in parallel as we traverse forward

through the model. This corresponds to performing a breadth-first search instead of a depth-first

search of the tree shown in Figure 13. Due to the Gaussian representation of intermediate conditional

51



Rn

choose i1

choose i2

choose S
...

· · ·

n(n− 1)2nd leaves

Figure 13: The tree structure of our partition of Rn. Each edge represents one or more half-space constraints,
and each vertex represents the polyhedral cone obtained by intersecting the constraints on its path to the

root. Equation 4 corresponds to a depth-first search of this tree, where we serially apply a SVol calculation at
each leaf. By contrast, GMHP can be viewed as a breadth-first search, where we maintain the conditional

means, conditional covariances, and cumulative probabilities of the largest C regions at each successive layer
of the tree.

distributions used in covariance propagation, we can view this as approximating the current state of the

model as a mixture of Gaussians. At every layer t, we maintain a list of components, each containing

a weight p ∈ [0, 1], a mean µ ∈ Rn, a covariance Σ ∈ Rn×n, a matrix A ∈ Rd×n, and an index i2 ∈ [n].

Semantically, this corresponds to a representation of the joint distribution of (x,h(t), y) as the distri-

bution induced by the following process:39

• Sample one of the components with probability proportional to its weight p. Retrieve the values

i2,µ,Σ,A associated with this component.

• Let y = i2.

• Sample x from N (µ,Σ).

• Let h(t) = Ax.

Propagating this representation through a linear transformation is easy: for each component, we simply

compose the transformation with the matrix A. This handles adding whixt or applying W hh or W oh

to the current activations.

The real action happens during the ReLUs. Instead of applying a layer of ReLUs to all d neurons at

once, we apply it one by one to each neuron in series. To propagate the representation through the

ReLU of a single neuron, we split each component into two: one child corresponding to Ax taking a

positive value at that neuron position, and the other child taking a negative value. We update the

mean µ, covariance Σ, and weight p of both children based on the process described in Section 6.4.1.

Finally, for the negative component, we zero out the row of A associated with the current neuron

position to demonstrate the effect of the ReLU.

Naively, this would double the number of components we have to track for every ReLU. To account for

this, we prune all but the C components with the highest weight by simply removing them from our

list. We re-normalize the weights of the remaining components to sum to 1. The value of the pruning

parameter C is up to us: lower values of C will be more efficient but lead to less accurate estimates.

39Note that this representation cannot be exact. In fact, it is not even logically consistent—for example, it places
positive probability on cases where y ̸= SAM(x).
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Once this representation has propagated through the entire RNN, we are left with at most C Gaussian

components. Each component is associated with a value of y, as well as an implied Gaussian distribu-

tion over the logit vector ℓ ∈ Rn. Under this distributional assumption, we can estimate the probability

that the y-th logit is higher than all of the others by applying covariance propagation through n − 1

more half-space constraints. Taking a weighted sum of these probabilities over all components gives

us an overall estimate of the accuracy of the model.

The time complexity of GMHP is O(Cn3d) when using an O(n2) algorithm for propagating a mean

and covariance through a single half-space constraint as discussed in Section 6.4.1. See Algorithm 4

for pseudocode.
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Algorithm 4 Gaussian Mixture Half-space Pruning (GMHP)

Require: RNN weights θ = (whi,W hh,W oh), pruning parameter C.
# Initialize Gaussian components with all n(n− 1) choices of i1, i2

1: components← []
2: for i1 ← 1 to n do
3: for i2 ← 1 to n do
4: if i1 = i2 then
5: continue
6: end if
7: comp← GaussianComponent(p = 1,µ = 0,Σ = Idn,A = 0, i2 = i2)
8: for j ← 1 to n do
9: if j = i1 then

# Propagates p, µ, and Σ through a half-space with a given normal vector. ej ∈ Rn is
the j-th unit direction.

10: comp← comp.condition halfspace(ej − ei2)
11: else if j ̸= i2 then
12: comp← comp.condition halfspace(ei2 − ej)
13: end if
14: end for
15: Append comp to components

16: end for
17: end for

18: for t← 1 to n do
# Apply this layer’s linear transformation

19: for comp in components do
20: comp.A←W hh comp.A # Matrix multiplication
21: comp.A:,t += whi

22: end for
# Apply ReLUs one by one

23: for j ← 1 to d do
24: new components← []
25: for comp in components do
26: pos← comp.condition halfspace(comp.Aj,:)
27: neg← comp.condition halfspace(−comp.Aj,:)
28: neg.Ai,: ← 0
29: Append pos and neg to new components

30: end for
31: Sort new components by weight p in descending order
32: components← new components[:C] # Prune all but first C
33: end for
34: end for

35: ans← 0 # Sum of probabilities of correct logit being highest
36: Z ← 0 # Sum of all probabilities, for re-normalization
37: for comp in components do
38: Z += comp.p
39: comp.A←W oh comp.A
40: for j ← 1 to n do
41: if j ̸= comp.i2 then
42: comp← comp.condition halfspace(comp.Ai2,: − comp.Aj,:)
43: end if
44: end for
45: ans += comp.p
46: end for

47: return ans/Z
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6.5 Experimental setup

To test the efficacy of GMHP as a deductive estimator for Acc(θ), we use gradient ascent to optimize

the weights of a small RNN to maximize GMHP(θ). We compare the accuracy of the resultant network

(which is measured via traditional sampling) with the accuracy of RNNs trained against a variety of

sampling-based surrogate loss functions.

6.5.1 Objective functions

First, we have our two deductive methods:

• Exact accuracy (Girard). When n = 3, we can directly calculate the exact accuracy of the

RNN using the algorithm described in Section 6.3. We call this objective Girard Accuracy due

to its use of Girard’s formula.

• Gaussian Mixture Half-space Pruning (GMHP). This is the DPE for Acc(θ) described in

Section 6.4. Unless otherwise specified, we set the pruning parameter to C = 104.

The remaining surrogate loss functions are all sampling-based:

• Cross-entropy loss (CE). This is the loss function traditionally used when training neural

networks. On a randomly sampled input x ∈ Rn, the CE loss is

LCE(θ;x) := − log pSAM(x)(x).

• Sigmoid Separation loss (SS). A shortcoming of CE loss is that it incentivizes the model to

increase the logit of the correct answer, even if it is already either the highest logit or so far below

the others that changing the prediction is hopeless. This may waste RNN “capacity” that could

be more efficiently spent on improving its accuracy on other regions of input space. Intuitively,

we want our loss function to only provide strong gradient updates when a small perturbation in

the logits could change its prediction from incorrect to correct (or vice versa). This motivates

the following objective function, which we call Sigmoid Separation loss. On an input x ∈ Rn,

define the logit margin m(x) to be the difference between the correct logit and the highest other

logit:

m(x) := ℓSAM(x)(x)− max
i ̸=SAM(x)

ℓi(x).

Then, the SS loss is:

LSS(θ;x) := sigmoid(−m(x)/δ)

where sigmoid(z) = (1 + e−z)−1. The sigmoid function is chosen for its S shape, which means

its derivative is only large when the margin is close to 0. We set the parameter δ to be 10−2

unless otherwise specified, which we found to work the best in practice.40 Note that SS loss can

be thought of as a smoothed version of accuracy: as δ shrinks to 0, LSS approaches LAcc.

• Hook loss. The Hook loss also uses the logit margin, but it applies a discrete threshold instead

of a sigmoid. This loss function was introduced in [CS02] for optimizing multiclass kernel-based

vector machines. It can be viewed as a multiclass generalization of the commonly-used Hinge

loss.

LHook(θ;x) := max(−m(x) + α, 0)

We use α = 1 unless otherwise specified.

40In theory, the value of δ should not change the accuracy we are able to achieve. Given any two δ1, δ2, let θ1, θ2 be
the global optima of Ex[LSS(θ;x)] when δ is set to δ1 and δ2, respectively. Then Acc(θ1) = Acc(θ2) because θ2 can
always copy θ1 except with W oh scaled up by δ1/δ2. However, in practice, the choice of δ affects the training dynamics.
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Figure 14: We can train against Girard Accuracy with gradient ascent. The CE loss gets worse as we do this.
We use a constant learning rate of 3× 10−3 with a warm-up.

6.5.2 Model training

In practice, training runs on tiny models often get stuck in poor local minima. Rather than train

all of our models from scratch, we first train five models with different random initializations against

cross-entropy loss until convergence, then discard all but the most accurate one. We then observe how

much that model’s accuracy increases or decreases relative to this CE-trained baseline

after further optimization on each of the other objectives (Girard, GMHP, CE, SS, Hook).

This reduces the variance between training runs and allows us to draw a fairer comparison between

the different objective functions.

Our main experiments are on RNNs of sizes (n, d) ∈ {4, 5, 6, 8} × {3, 4, 5, 6}. This amounts to 16

different models. We train models with the Adam optimizer [KB17] and a custom learning rate

schedule.41 We use 250 gradient steps when training against GMHP, and 500 gradient steps with a

batch size of 220 when training against Hook or SS. These choices are usually enough for the loss to

converge. All of our experiments take less than an hour to run on an A100 GPU.

Our code is available at https://github.com/GabrielDWu/piecewise-constant-objectives.

6.6 Results

6.6.1 Training on Girard Accuracy (n = 3)

We first investigate the effect of applying gradient ascent directly against Girard Accuracy, which is

only feasible when n = 3. Figure 14 shows that on the n = 3, d = 3 model, training against the true

accuracy improves it by 1.58 percentage points from 83.8% to 85.4%.42 In comparison, training on SS

loss is only able to improve accuracy by 0.93 percentage points, and Hook loss is unable to increase

the accuracy beyond the CE baseline.

Training against Girard Accuracy for n = 3, d = 2 is initially less effective, but a small tweak in the

41The learning rate x ∈ [0, 1] of the way through training is 10−2d−1/2 · 0.01min(2x,1)︸ ︷︷ ︸
decay

·min(10x, 1)︸ ︷︷ ︸
warm-up

, unless otherwise

specified.
42However, training is quite unstable. Figure 14 only shows the first 297 gradient steps. If we continue training, the

accuracy quickly drops down and 83.1% and takes a while to recover.
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Figure 15: Change in accuracy incurred by training against the GMHP, SS, and Hook objectives, compared
to the cross-entropy baseline.

Figure 16: A side-by-side comparison of the GMHP, SS, and Hook training runs on the n = 4, d = 3 model.

algorithm improves it by a lot. See Appendix I for more discussion.

6.6.2 Comparison of other methods (n ≥ 4)

Figure 15 presents the effects of training on each of the objectives for n ≥ 4. There is a fair amount

of variation across different model sizes. SS loss is usually the objective that incentivizes the highest

accuracy, although it is occasionally outperformed by GMHP. Both usually beat the cross-entropy

baseline, which usually beats Hook loss. The absolute accuracies of the cross-entropy baselines are

listed in Table 6.

Figure 16 shows the n = 4, d = 3 model’s accuracy over the course of training for each objective.

GMHP is the best training proxy for accuracy on this model, as evidenced by the accuracy curve

closely following the shape of the GMHP objective curve. This is true even though GMHP itself is not

a particularly good absolute estimator for accuracy — it consistently underestimates the accuracy by

many percentage points. See Appendix M for loss curves of all 16 models.

More experiments can be found in the appendices. Briefly: Appendix J explores the effect of changing

the pruning parameter C for GMHP, Appendix K demonstrates that the CE-trained baseline models

have been trained to convergence, and Appendix L shows the distribution of region sizes in Equation 4.
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6.7 Discussion

6.7.1 Limitations

Our current setting has many limitations. First, we only work with tiny models that have fewer than

100 parameters. It would be more exciting to see deductive estimation methods applied to bigger

models. Second, the algorithms for Girard Accuracy and Gaussian Mixture Half-space Pruning are

somewhat bespoke to the second-argmax task we chose to analyze. It is not immediately clear how to

generalize these techniques to other tasks where the ground-truth classification boundaries are more

complicated than linear inequalities on x.

Finally, a prerequisite to creating a deductive estimation for neural networks is having a mathematical

formalization of the quantity of interest. In the supervised learning setting, this means we must have

a formal understanding of the distribution of labeled pairs (x, y). In our work, this was easy — the

input distribution was a standard Gaussian, and the label y was a simple algorithmic function of x —

but this assumption quickly breaks down in more interesting settings like “classify pictures of cats” or

“predict the next token of internet text.”

However, there may be creative ways to get around this problem. For example, say we want to train a

neural network Mθ to achieve the maximum possible accuracy at classifying cat breeds. We don’t have

a formal definition of this problem, but we could train a generative model G that takes in a Gaussian-

distributed latent z and outputs a labeled picture of a cat, e.g., with a diffusion model. Denote the

output of G by G(z) = (Gx(z), Gy(z)), where Gx is an image and Gy is the label. Then the quantity

Ãcc(θ) = Pr
z∼N (0,Idd)

[Mθ(Gx(z)) = Gy(z)]

is formally defined, so we could train θ with gradient ascent against a deductive estimator for Ãcc(θ).

As long as the distribution outputted by G is sufficiently close to the actual data distribution, this

allows us to improve the accuracy of Mθ on the real-world distribution of cats. This idea is closely

related to synthetic data generation, which is already widely used to train modern AI systems, although

a sampling-based method is usually used for optimization instead of a deductive estimate [BTS+24].43

6.7.2 Related work

To our knowledge, this work is the first to study deductive accuracy estimation for neural networks.

However, the central problem addressed in this section — that the accuracy of a classifier over a

finite dataset cannot be directly optimized with gradient ascent — has been thoroughly studied from

theoretical and empirical angles. For example, [PLBM06] discusses how the non-convexity of the 0–1

loss motivates the use of surrogate losses. They analyze the relationship between 0–1 accuracy (which

we simply call “accuracy”) and a general surrogate loss function, proving upper bounds on the decrease

in accuracy incurred by maximizing a surrogate objective instead of accuracy itself.

Besides cross-entropy loss, some common surrogates for accuracy are Hinge loss, L1 loss, and L2 loss.

[JC17] compares these objectives alongside many other sampling-based losses in the context of training

MNIST classifiers. Note that their definition of Hinge loss is very similar to our Hook loss.

When a computational graph features non-differentiable sampling steps of a categorical random vari-

able, these steps can be replaced with a differentiable relaxation called the Gumbel-Softmax distri-

bution [JGP17]. For example, it can be used to optimize the expectation of a trajectory sampled

from a policy during reinforcement learning without relying using the score function estimator. The

Gumbel-Softmax is not immediately applicable to our setting, though it has a similar flavor to Sigmoid

Separation loss: at low temperatures, Gumbel-Softmax approximates the categorical distribution in

43This setup may be especially useful in domains where discrimination (training M) is harder than generation (training
G). There are theoretical reasons to expect this to be true in some settings; for example, it is much harder to find a
planted clique in a graph than it is to sample from the distribution of random graphs with planted cliques.
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the same way that SS loss approximates 0-1 loss.

In general, maximizing the 0-1 accuracy of a model on a dataset of size n is NP-hard, even when the

model is a linear classifier. Despite this, [NS13] introduce practical algorithms for this task, including

“branch and bound” methods and combinatorial search. Their work focuses on linear binary classifiers.

Finally, [Rob21] decomposes a neural network with ReLU activations into piecewise-affine regions, with

the aim of transforming it into an interpretable decision tree. Like GMHP, they prune the smallest

regions along the way to prevent exponential blowup.

6.7.3 Conclusion

In this work, we have established that deductive estimators can be used to increase the accuracy of

small neural networks beyond what is traditionally possible with cross-entropy loss. Occasionally, this

also beats other sampling-based objectives like Sigmoid Separation loss specifically designed to give

a smooth approximation to the accuracy. I view this as a promising early sign that the theory of

deductive estimation can provide value in empirical contexts, which is good news for the ambitious

applications to AI alignment laid out in Section 3.

Directions for future work include improving the effectiveness of GMHP, perhaps by using a class of

distributional representations better suited for modeling the intersection of half-space constraints. We

could also explore more sophisticated methods for propagating distributions through half-spaces than

simply tracking conditional covariances. For example, we may want information about the constraints

to be able to travel in both directions rather than only forwards. This motivates notions of distribu-

tional divergence that differentially incentivize matching the ground-truth distribution in regions that

will end up being important for the final estimate, in contrast with the our current implicit use of KL

divergence via moment matching (which cares about the fidelity of the representation equally across

all of Rd).

More broadly, we would be excited to see future research that designs deductive estimators for a wide

range of algorithmic tasks beyond the second-argmax. We also hope to see new ways of validating the

usefulness of such estimators. In our experiments, this involved using the gradient information provided

by the estimate to train models more effectively, but future validation methods could involve other

tests such as comparing the accuracy of the deductive estimator (over some distribution of models)

against a sampling-based estimator that uses the same computational budget.
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7
Conclusion and Future Work

In this thesis, I have presented deductive estimation as a new class of techniques for understanding and

training neural networks. In particular, I introduced a family of methods called Deduction-Projection

Estimators that track the internal states of a computation (e.g., the distributions of activations in a

neural network) by alternating between logically sound “deduction steps” and approximate “projection

steps.” This builds on the philosophical picture of heuristic estimators laid out by [CNX22, CHL+24].

Unlike traditional methods in machine learning, deductive estimation never requires us to generalize

from observing model behaviors on a small set of random inputs to making claims about an entire

input distribution. Instead, it challenges us to build a bottom-up explanation of how a neural network

functions, which could be useful for controlling the worst-case behavior of models in contexts like low

probability estimation or mechanistic anomaly detection. Deductive estimators distinguish themselves

from the standard approach to mechanistic interpretability because they aspire to be purely algorith-

mic: humans do not need to understand the explanations any more than they understand the models

themselves. Our hope that such explanations exist comes from intuitions around the No-Coincidence

Principle: the informal conjecture that any outrageously surprising mathematical fact has a satisfying

explanation [Gow19].

In the applied section of this thesis, we compared DPE-based approaches against sampling-based ap-

proaches in two different machine learning settings. Our first setting studied low probability estimation

in language models, in which we found that DPE-inspired activation extrapolation methods do not

perform as well as our importance sampling estimators (which we designed with inspiration from mod-

ern red-teaming techniques like [ZZC+24]), but are still able to beat simple baselines. In our second

setting — training small recurrent neural networks for maximal accuracy on an algorithmic task —

we showed that Gaussian Mixture Half-space Pruning, a DPE that leverages covariance propagation,

can often outperform the widely-used cross-entropy loss.

Given the preliminary nature of this line of inquiry, there are many exciting directions for future

research. On the philosophical side, we could benefit from more clarity on the definition and desired

properties of deductive estimation. From the perspective of theoretical computer science, we have

Conjecture 4.1 as a concrete framing of the No-Coincidence Principle. In machine learning, open

questions include: Can we create DPEs for transformers that outperform sampling-based estimators

at the low probability estimation task defined in Section 5? What do deductive estimators look like for

small neural networks trained on tasks besides second-argmax? Can we apply any of these techniques

to beat baselines at empirical mechanistic anomaly detection?

Finally, given the rapid pace of improvement in AI capabilities, we believe that the task of applying

deductive estimation methods to solve problems in AI alignment is interesting, important, and timely.
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Scheurer. Analyzing Probabilistic Methods for Evaluating Agent Capabilities.

https://arxiv.org/abs/2409.16125, 2024.

[HvMM+21] Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott

Garrabrant. Risks from Learned Optimization in Advanced Machine Learning Systems.

https://arxiv.org/abs/1906.01820, 2021.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of

Structure in Complexity Theory. Tenth Annual IEEE Conference, pages 134–147, 1995.

[IS68] F. Itakura and S. Saito. Analysis synthesis telephony based on the maximum likelihood

method. In Proc. 6th of the International Congress on Acoustics, pages C–17–C–20, Los

Alamitos, CA, 1968. IEEE.

[IST+19] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran,

and Aleksander Madry. Adversarial Examples Are Not Bugs, They Are Features.

https://arxiv.org/abs/1905.02175, 2019.

[JC17] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss functions for deep neural

networks in classification. https://arxiv.org/abs/1702.05659, 2017.

[JGP17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-

softmax. https://arxiv.org/abs/1611.01144, 2017.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability Obfuscation from Well-

Founded Assumptions. https://arxiv.org/abs/2008.09317, 2020.

[JYW+24] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press,

and Karthik R Narasimhan. SWE-bench: Can language models resolve real-world github

issues? In The Twelfth International Conference on Learning Representations, 2024.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

https://arxiv.org/abs/1412.6980, 2017.

[KSB+19] Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, and Jacob Steinhardt. Transfer of

adversarial robustness between perturbation types. arXiv preprint arXiv:1905.01034,

2019.

[LCH+20] Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung

Poon, and Jianfeng Gao. Adversarial Training for Large Neural Language Models.

https://arxiv.org/abs/2004.08994, 2020.

[LZXGM23] Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K. Mansinghka. Se-

quential Monte Carlo Steering of Large Language Models using Probabilistic Programs.

https://arxiv.org/abs/2306.03081, 2023.

[Mad17] Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv

preprint arXiv:1706.06083, 2017.

[MDMM11] J Machta, S DeDeo, S Mertens, and C Moore. Parallel complexity of random Boolean

circuits. Journal of Statistical Mechanics: Theory and Experiment, 2011(04):P04015,

2011.

[MET25] METR. Measuring ai ability to complete long tasks. https://metr.org/blog/

2025-03-19-measuring-ai-ability-to-complete-long-tasks/, 03 2025.

[MMZ23] Anqi Mao, Mehryar Mohri, and Yutao Zhong. Cross-Entropy Loss Functions: Theoretical

Analysis and Applications. https://arxiv.org/abs/2304.07288, 2023.

64

https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/
https://metr.org/blog/2025-03-19-measuring-ai-ability-to-complete-long-tasks/


[MRM+24] Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron

Mueller. Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs

in Language Models. https://arxiv.org/abs/2403.19647, 2024.
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A
Principles for choosing a decomposition in

QLD

In this section, we justify the claim that we rely on the following two assumptions of the decomposition

u = a + b for QLD to perform well: 1) a and b are independent, and 2) the contribution towards the

output behavior is split roughly equally between the two terms.

The first assumption is straightforward: if a and b are not independent, then a + b′ (where b′ comes

from an i.i.d. copy of u) does not have the same distribution as u. The failure of this assumption

introduces bias into the estimation method. Working in whitened space ensures that a and b are

uncorrelated, which is a first step towards independence.

The second assumption—that the contribution to the target behavior is roughly equally split between

a and b—is necessary for QLD to have an advantage over naive sampling. For purposes of illustration,

say that d = 2 (so that both a and b can be treated as scalars), and that a,b
iid∼ N (0, 1). Then,

consider three ways that the contribution to the target behavior could be split:

• Scenario 1 (no split): The target token is outputted iff a > 10. In this case, QLD provides no

advantage over naive sampling, as the proportion of (a(i),b(j)) pairs in the acceptance region is

exactly the same as the proportion of (a(i),b(i)) pairs. If p is the probability of the behavior,

then p−1 samples are required to consistently obtain a positive estimate.

• Scenario 2 (even split): The target token is outputted iff a + b > 10
√

2. In this case, QLD has

a quadratic advantage over naive sampling. It only requires around p−1/2 samples for QLD to

consistently obtain a positive estimate.

• Scenario 3 (uneven split): The target token is outputted iff a + 2b > 10
√

5. The contribution

here is split between a and b, though not equally, so QLD’s efficiency falls in between the previous

two scenarios. We can calculate that it requires around p−5/9 samples for QLD to consistently

obtain a positive estimate.44

In practice, the condition for outputting the target token is more complex than a single linear constraint

on a and b. Nevertheless, these examples motivate the idea that the more evenly we can split the

contribution between two subspaces, the lower variance our estimator will have.

Given that b has d−1 dimensions while a only has 1, most choices of d will end up giving b much more

influence over the behavior than a. This motivates us to identify a particularly important direction

with d; in some informal sense, we want to find a direction that is “d/2 times more important” than

the average direction.

When we run QLD with many more samples than its standard budget of 216, its performance improves

but plateaus at a level that is still worse than the sampling methods. This shows that QLD is currently

limited by a poor independence assumption, as the error arising from an unequal split of contribution

should vanish with a sufficient number of samples.

44In general, if the condition is αa +
√
1− α2b > 10, it requires roughly p

−1/
(
α+

√
1−α2

)2

samples to consistently
obtain positive estimates.
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B
Computing the Shortest Accepting Vector

Recall that the acceptance region S ⊆ Rd is the subset of whitened pre-unembed space that results in

the model outputting t:

S :=
{
u ∈ Rd

∣∣ arg maxi((Au + µ) ·WU )i = t
}
.

We define d to point in the direction of the shortest vector in S, i.e., arg minu∈S ∥u∥. This vector can

be approximated using an iterative convex projection algorithm.

S ⊆ Rd is an intersection of |V − 1| half-spaces H1, . . . ,Ht−1, Ht+1, . . . HV , where Hi represents the

set of all activations (in whitened pre-unembed space) that result in the logit on token t being larger

than the logit on token i.

Given any convex set C (such as a half-plane), the projection of x /∈ C onto C is arg minx′∈C ∥x−x′∥2.

Given a collection of convex sets, there exists a simple algorithm for finding a point in their intersection:

start with an arbitrary point x, then repeatedly project x onto a random convex set that does not

already contain x. Eventually, this process converges to a point in their intersection [GPR67].

We apply this method to find an element of S. To ensure that it is the shortest element, we also

project x onto balls centered at 0 with smaller and smaller radii by multiplying x by 0.99. The exact

procedure is described in Algorithm 5.45 In practice, it always takes much less than 100 · nreps steps

for the algorithm to return a value.

Algorithm 5 Random Constraint Projection

Require: Half-spaces H1, . . . ,Ht−1, Ht+1, . . . ,H|V|, number of repetitions nreps

1: x← 0 ∈ Rd

2: for step cnt← 1 to 100 · nreps do
3: Pick a random i among all i such that x /∈ Hi

4: Project x onto Hi

5: if x lies in S (up to some tolerance ϵ) then
6: if step cnt < nreps then
7: Scale x by 0.99.
8: else
9: return x

10: end if
11: end if
12: end for

45We found a few minor bugs in our implementation of the ϵ-tolerance in our algorithm after we ran experiments, but
we don’t expect them to have affected the results at all.
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C
Ground Truth Token Distribution

Figure 17: The ground truth probabilities of tokens for each distribution and model size, sorted from most to
least probable (the height of the curve at position x is the probability of the x-th most common token). Any
tokens that appeared 0 times across all 232 samples are not plotted. The hex distribution only had 159 and
135 tokens in the range [10−9, 10−5] for the 2- and 4-layer models, respectively, so we used every such token

instead of sampling 256 of them.

70



D
Computational Budgets

Each estimation method was given a budget of roughly 216 model calls. More specifically:

• Independent Token Gradient Importance Sampling uses 28 batches of size 28, for a total of 216

samples. The average gradient is updated after each batch. Note that this method requires

backward passes as well as forward passes.

• Metropolis–Hastings Importance Sampling uses 210 +211 batches of size 25, for a total of 1.5 ·216
samples (the batch size indicates the number of independent random walks the method simulates).

The first 210 batches are used as a burn-in period for the random walk and are discarded, so

only 216 samples are actually used to calculate the estimate.

• Quadratic Logit Decomposition uses n = 216 samples of the pre-unembed activation v. The

MLE direction is approximated with nreps = 200 iterations of the Random Constraint Projection

algorithm (Appendix B); this makes up a trivial fraction of the total compute usage of the

method).

• Gaussian Logit Difference uses 216 samples of the logit difference to estimate µ and σ, the mean

and standard deviation of the difference between the target logit and the maximum logit. Note

that in practice, the µ and σ can be accurately estimated with much fewer than 216 samples.

In practice, ITGIS and MHIS take the longest to test because they require separate samples for each

target token. In contrast, QLD reuses the same 216 samples of v for all 256 target tokens associated

with a given behavior.
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All Method Performances

Table 3: Itakura–Saito loss (p/q − ln(p/q)− 1) comparison of all estimation methods on all input
distributions and model sizes.

(a) 1-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.5891 2.2163 2.0038 2.0484 1.3960
camel 2.5908 2.4419 2.0648 1.1997 2.0187
colon 2.7770 2.7091 1.2786 1.2209 1.0267
if 2.2424 2.1872 1.2321 1.0916 1.4455
caps 2.6619 2.6147 1.9413 1.4788 2.4023
english 1.9095 1.8120 1.2409 1.4539 0.7017
spanish 2.6079 2.4463 1.5628 1.6396 2.1538
icl 2.5467 2.4328 2.2373 0.7992 1.2344

Average 2.4906 2.3575 1.6952 1.3665 1.5474

(b) 2-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.8839 2.8453 2.7698 2.6652 1.4985
camel 2.3242 2.2268 2.2679 1.9221 2.0637
colon 2.9893 2.8335 2.1215 2.2986 1.9042
if 2.6172 2.4377 1.8397 1.0301 1.2516
caps 2.6345 2.6820 2.4847 1.9271 1.6981
english 2.0989 2.0956 1.3462 0.9908 1.4480
spanish 2.5442 2.3662 1.5670 1.0951 2.3095
icl 2.6381 2.5419 2.3601 1.6420 1.0502

Average 2.5913 2.5036 2.0946 1.6964 1.6530

(c) 4-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.4803 2.2934 2.4282 2.3090 2.0830
camel 2.4895 2.3271 2.4534 2.0937 2.2961
colon 2.9325 2.7319 2.4382 2.1295 1.1710
if 2.6477 2.5408 1.8313 1.8430 0.9261
caps 2.5970 2.5382 2.4142 2.0484 1.2972
english 2.7008 2.7432 1.5681 0.9943 1.3051
spanish 2.6415 2.5022 1.7716 1.6611 2.1936
icl 2.5029 2.1925 2.3866 2.2971 0.5477

Average 2.6240 2.4837 2.1615 1.9220 1.4775
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Squared Error in Log-Space

Figure 18 and Table 4 show the method performances when measured using squared error in log-

space loss (i.e., (log p − log q)2) instead of Itakura–Saito loss. The results are qualitatively identical

using either metric. Note that we use separate affine fits to minimize each loss function—in Table 4

we naturally report the results of the fit corresponding to squared error in log-space. However, the

importance sampling temperatures are not changed between the two metrics (they were tuned while

minimizing Itakura–Saito loss).

Figure 18: The squared error in log-space loss of all methods across different model sizes. The solid lines
indicate the loss of each method averaged over all 8 distributions, with bands indicating standard error. The

colored points indicate the loss on individual distributions, with horizontal jitter added for visibility.
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Table 4: Squared error in log-space loss comparison of all methods, distributions, and model sizes.

(a) 1-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 6.0093 5.1815 4.4863 3.7179 2.1963
camel 7.7295 6.4975 5.8488 1.5156 4.3248
colon 6.8554 5.4361 2.1379 2.3549 1.8061
if 5.3977 4.9287 2.9356 1.9555 3.2223
caps 8.0927 7.5675 4.1349 3.2173 6.5550
english 6.0051 5.3220 3.2639 1.8357 1.6395
spanish 5.7990 5.5649 2.9740 2.1231 4.2612
icl 5.9035 5.6915 4.8023 1.0222 2.3030

Average 6.4740 5.7737 3.8230 2.2178 3.2885

(b) 2-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 8.0536 7.3674 7.6533 6.8004 1.9913
camel 7.6849 6.3518 7.2325 4.2695 5.6046
colon 7.1728 5.6416 3.3924 4.1851 2.8242
if 6.3346 5.6923 3.3695 1.7059 2.1639
caps 7.7682 6.8605 5.4771 3.0411 3.3432
english 5.2742 5.1185 3.4466 1.6335 3.2728
spanish 6.3718 5.6877 3.8404 2.1582 4.6937
icl 6.2785 6.2061 5.0740 2.0615 1.3515

Average 6.8673 6.1158 4.9357 3.2319 3.1556

(c) 4-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 7.5559 6.9208 7.0750 6.4364 3.1605
camel 7.5597 6.5413 7.1263 3.5067 5.5501
colon 7.1791 6.6035 3.5817 4.3916 1.7897
if 6.6900 5.9072 3.8987 3.7153 1.6824
caps 9.1105 8.2957 6.1383 4.3615 2.2514
english 5.5003 5.4866 3.3561 1.9180 2.1938
spanish 7.0490 6.4641 4.2083 3.4425 4.8425
icl 5.1793 4.4569 4.4772 4.5584 1.0216

Average 6.9780 6.3345 4.9827 4.0413 2.8115
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Temperature Tuning

Both importance sampling methods require choosing a temperature parameter T . To tune T , we sweep

over 9 different temperatures from 0.2 to 5, uniformly spaced in log-space. We choose the value of

T that achieves the lowest loss on 100 randomly chosen tokens with ground-truth probabilities in the

range [10−5, 10−3] to prevent over-fitting. We tune separate temperatures for each distribution, model

size, and importance sampling method, shown in Table 5. It is likely that spending more effort to tune

these temperatures (e.g., by tuning on more and rarer tokens) would moderately improve the final

performances of the importance sampling methods.

Table 5: Temperatures T used for the different methods.

1 layer 2 layers 4 layers
Distribution ITGIS MHIS ITGIS MHIS ITGIS MHIS

hex 1.00 0.67 1.50 0.67 5.00 0.67
camel 1.00 2.24 1.50 2.24 1.00 2.24
colon 1.00 1.00 1.00 1.50 0.67 1.00
if 1.00 2.24 0.45 1.50 1.00 1.00
caps 1.50 3.34 0.45 1.50 0.67 1.00
english 0.45 1.50 0.67 2.24 0.45 1.50
spanish 0.67 2.24 0.67 2.24 1.00 2.24
icl 0.45 1.00 0.30 0.67 3.34 0.67
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Plots of Method Outputs

Figures 19, 20, and 21 show the outputs of the four methods on all three model sizes, using log-log plots

of ground-truth probability vs method output. All graphs show the outputs after the Itakura–Saito

fit has been applied. The horizontal lines of points reveal the value of the additive constant in the fit;

any outputs of 0 will all lie on this line after the fit is applied.

Figure 19: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the 1-layer
model. The horizontal axis represents the ground-truth token probability, while the vertical axis is the output

of the model after a fit.
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Figure 20: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the 2-layer
model. The horizontal axis represents the ground-truth token probability, while the vertical axis is the output

of the model after a fit.
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Figure 21: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the 4-layer
model. The horizontal axis represents the ground-truth token probability, while the vertical axis is the output

of the model after a fit.
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Girard Accuracy for n = 3, d = 2

Training directly against Girard Accuracy does not immediately yield impressive results for d = 2: the

accuracy improves by a mere 0.06%, from 42.52% to 42.58%.

However, we observe an interesting result if we slightly modify the definition of Acc(θ). The CE-trained

n = 3, d = 2 model very frequently outputs 0 for both logits. Whenever this happens, we usually treat

this as a “half-accurate” prediction (see footnote 36). We could instead treat this as an incorrect

prediction; call this new notion of accuracy Acc′(θ). Note that there is no particular reason why we

should prefer one definition of accuracy over the other; the choice made in this thesis was somewhat

arbitrary. The Acc′ of the original n = 3, d = 2 model is 22.5%, which is significantly lower than its

Acc of 42.5%.

We can easily modify our Girard Accuracy algorithm to calculate Acc′. When we train the model

against this new accuracy metric, its Acc′ more than doubles from 22.5% to 46.2%! Such gains

are achievable because it is possible to significantly drive down the probability that the model outputs

0. See Figure 22 for the training curve.

Notably, the final Acc after training is also 46.2%. This means that training for Acc′ achieves a higher

Acc than training against Acc itself, by a significant margin (3.6 percentage points, which also handily

beats SS and Hook loss). This points to the difficulty of optimization via gradient descent in tiny

models — local minima are very hard to avoid when there are only 12 parameters.

Figure 22: The training trajectory of the n = 3, d = 2 model on Acc′. Note that we only train against Acc′

(bottom), but we track the CE (top) and a Acc (middle, estimated via samples) along the way. We use a
constant learning rate of 5× 10−3 with a warm-up.
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The Effect of C on GMHP

Figure 23 shows what happens when we optimize against the Gaussian Mixture Half-space Pruning

objective for different values of the pruning parameter C. When we decrease C, it becomes a worse

proxy for Acc(θ). Intuitively, optimizing solely for the accuracy of the largest regions comes at the

cost of hurting the smaller regions.

Figure 23: Training against GMHP works better when C is large.
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Cross-Entropy Loss has Converged

To make sure our comparisons against the accuracy of the “pre-trained” cross-entropy baseline models

are fair, we check that continued training on CE loss makes no improvements in either CE or accuracy.

Figure 24 shows the results on two of the models. Indeed, even with a batch size of 220 and training

for 2500 gradient steps, variation in the sample accuracy between steps is almost completely explained

by sampling error. The average sample accuracy over the last 1000 steps compared to the first 1000

steps only increases by 3×10−4 (for the n = 4, d = 3 model) and 5×10−5 (for the n = 8, d = 5 model).

Figure 24: Continued training on cross-entropy loss for the n = 4, d = 3 and n = 8, d = 5 models.
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Distribution of Region Sizes

Equation 4 expresses the accuracy of an RNN in terms of the sizes of 2ndn(n− 1) regions. A natural

question to ask is: what does the distribution of the sizes of these regions look like? Figure 25 shows

that it tends to be extremely heavy-tailed. For example, when n = d = 3, the largest 10 regions

account for almost all of the accuracy of the model. In fact, in this model, 97.7% of the regions have

size exactly 0 due to having conflicting constraints. The fraction of degenerate regions is even higher

in the n = 3, d = 4 model (99.6%).

Figure 25: For the n = 3, d = 3 and n = 3, d = 4 models, we calculate the exact sizes of all of the regions in
Equation 4. Left: the sizes, sorted in descending order (note the log scale on the x-axis). Right: the

cumulative sum of the sizes of the largest x regions. For example, the n = 3, d = 4 model has an accuracy of
83.8%, which corresponds to the horizontal asymptote on the upper-right plot.
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All Training Curves

Table 6 shows numerical data from Figure 15.

Figures 26 and 27 on the following two pages show the training curves of all 16 models trained on the

GMHP, SS, and Hook objectives. The runs almost always appear to converge to a local minimum.

Note that Hook loss exhibits a peculiar training dynamic — it often causes the accuracy to regularly

oscillate up and down.

Table 6: Change in accuracy incurred by training against the GMHP, SS, and Hook objectives, compared to
the cross-entropy baseline.

n d Initial Acc (%) GMHP Diff (%) SS Diff (%) Hook Diff (%)

4 3 43.27 1.98 0.74 −0.07
4 4 60.21 1.86 2.76 1.86
4 5 74.56 −0.08 1.63 −0.27
4 6 86.48 −0.68 0.80 0.36

5 3 37.57 0.85 1.07 −2.84
5 4 42.83 3.34 4.06 −1.52
5 5 54.21 −3.07 0.17 −1.79
5 6 70.29 −1.91 3.61 1.20

6 3 34.06 0.29 −0.40 −3.77
6 4 39.40 0.67 1.70 −4.23
6 5 45.03 2.45 3.71 0.26
6 6 48.44 1.27 3.68 −1.23

8 3 28.55 −1.06 −1.90 −5.29
8 4 34.61 1.06 1.53 −6.73
8 5 38.36 1.14 1.55 −5.27
8 6 40.47 0.17 1.55 −3.30
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Figure 26: Training curves for n = 4 and n = 5
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Figure 27: Training curves for n = 6 and n = 8
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